

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

NR2110D-O/G

10MHz Frequency Reference, OCXO, GNSS-Locked, Dual Channel

Available Options:

- Ethernet Monitoring
- Dual Time Base
- DC Input
- Square Wave
- CAN Bus (for use with Novus Distribution Amplifiers, control)
- SNMP

All information provided herein is the property of Novus Power Products LLC. The information included may be reproduced without the permission of Novus Power Products LLC. for the purpose of operating the equipment.

Page #: 1 of 43	www.novuspower.com
-----------------	--------------------

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Contents

Safety			3
Mounting			4
1.0 Summary			5
2.0 Controls and Indicators	- Front Panel		7
2.1 GNSS Status			8
2.2 GNSS Detailed Statu	S		9
2.3 Channel Status			9
2.4 Status LEDs			10
2.5 Power Supply Status			11
2.6 Alert Threshold			12
2.7 Latch Channel Value			15
2.8 Save Configuration			15
2.9 Fault Status			16
2.10 UTC Mode			17
2.11 GMT Offset			17
2.12 Frequency Display (Dual Time Base opti	on)	18
	_	Base)	
		······	
3.1 Channel Output - BN	C		20
<u>-</u>			
3.4 AC Input			21
-		t)	
		······	
		izing Two NR2110D-O/G a	
3.8 CAN Connector			24
4.0 Functional Description			25
4.1 Phase Noise			26
4.2 Outputs			26
4.3 Built-in Test			26
4.4 Power Supplies			27
6.0 Calibration			34
7.0 Programming Guide (R	S232 Port: Status On	ly)	35
7.1 RS232 Commands (S	tatus Only, for GNSS	S, see Append. A)	36
8.0 Technical Specificati	ons		39
Environmental and Mech	anical		40
9.0 LIMITED HARDWAR	E WARRANTY		41
10.0 Appendix A: GNSS Co	ommand Reference		43
11.0 Appendix C: \$GPNVS Status Strings			
Page #: 2 of 43		www.novuspower.com	

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Safety

This product has been designed and manufactured to recognized safety standards and rules. The product is a sophisticated electronic instrument that should be installed and operated by highly trained professionals.

Installation of this equipment should comply with all local electrical codes.

Utilization of this equipment in a manner inconsistent with the operating instructions can be dangerous.

DANGER

There are no user serviceable parts within the unit. Removal of the cover to access interior parts will expose the user to dangerous voltages.

DANGER

The unit may be powered from more than one power source. Care must be taken to be certain all power sources are removed before installation or during removal of the equipment.

DANGER

The unit must be operated with a secure earth ground to the chassis. The electrical path for earth ground is through the power connector. The power switching device that controls power to the equipment must never interrupt the chassis ground connection.

The equipment contains complex electronic components that can be damaged by electrostatic discharge. Observe all recognized standards for the handling of complex electronic devices to avoid high voltage discharge to the equipment. Be certain the equipment chassis and operator are at equipotential before handling the equipment.

Page #:

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Mounting

The equipment is meant to operate in a horizontal - top up configuration.

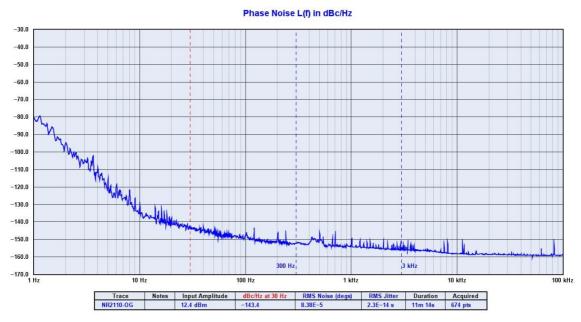
The equipment is meant to mounted into a 19-inch standard NEMA cabinet. The unit occupies a single "1RU". Mounting spaces above and below the equipment may be used as required.

Please observe the operating temperature range for the equipment. If mounted into a closed rack, be certain that the total heat load in the cabinet does not result in an interior operating temperature that exceeds the equipment maximum rated temperature.

If cooling must be used, care should be given to prevent cooling mechanical vibration from the coupling into the equipment. Mechanical shock and vibration may introduce noise into the electronic signals inside the equipment that may degrade the performance of the equipment.

For applications where there is significant shock and vibration, Novus offers equipment with interior mechanical design features to minimize the effects of vibration and shock on the equipment performance.

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221


1.0 Summary

The NR2110D-O/G is a dual channel precision GNSS/GPS locked 10MHz frequency reference. The amplifier is a low phase noise design to preserve the integrity of the reference signal. All outputs are transient, and fault protected.

The unit features auto-calibration, which ensures the most recent OCXO compensation coefficients are stored in non-volatile memory. The compensation values eliminate drift due to aging and/or temperature and are stored and applied to the OCXO during loss of GNSS lock conditions. These coefficients are updated after two hours of continuous GPS locked state. This effectively compensates for long-term OCXO changes.

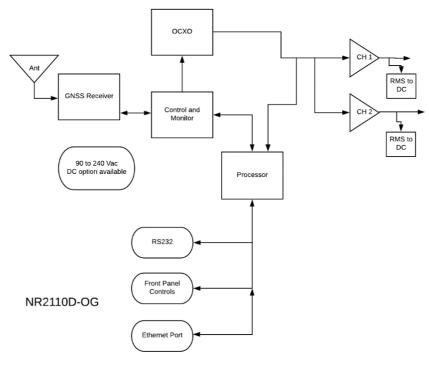
Excellent aging characteristics are achieved through the use of intrinsically low jitter overtone SC cut crystals in a temperature-controlled oven. There are two 10 MHz output on the rear panel (BNC) connector. Low phase noise is achieved by the inherent crystal characteristics and appropriate design techniques for noise mitigation.

Typical Phase Noise performance:

Page #: 5 of 43	www.novuspower.com	
------------------------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Offset Frequency, Typical	
Offset (Hz)	Standard (dBc/Hz)
10	-130
100	-145
1k	-150


The unit features extensive reporting via the rear panel RS232 port - equipment status, output voltage on each channel and redundancy status.

By being able to monitor the output voltage, the user can detect cabling issues that cause an impedance change and replace cabling before it completely fails. Reporting is also easily accessible via the front panel display and SNMP.

Page #: 6 of 43 www.novuspower.com

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Dual Channel GNSS Locked 10 MHz Rubidium Reference

Nominal power is global AC power, but a DC power option can be ordered that acts as the back-up power supply. Nominally 24 Vdc, this port is used for power when AC power fails.

Switching between power sources is automatic and there is no transient power outage at the equipment level. The primary power supply is followed by low noise linear converter assemblies. There will be one in a non-redundant configuration.

2.0 Controls and Indicators – Front Panel

Page #: 7 of 43 www.novus	power.com
---------------------------	-----------

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

This section describes the functionality of the front panel controls and indicators. Two buttons above the status LEDs provide navigation through the menus.

In general, the NEXT button advances through the menus to the next screen, while the SELECT button chooses between the available values on a menu.

Menus that allow selectable adjustments are the Input Threshold, Alert Threshold, and the Attenuation setting. To adjust these values from the front panel, hold down both buttons for two seconds until the value begins to flash. To leave the menu with the new value, hold down both buttons until the value is solid.

Screen Saver: After one hour, the OLED display will turn off, unless activated by a fault condition, or by a user input, such as pressing the NEXT or SELECT buttons.

2.1 GNSS Status

On power-up, the NR2110D-O/G will display the time and date as well as the current status of the GNSS receiver. If the unit is dual time based, both receivers will have status displayed.

GNSS: The GNSS status indication allows the user to observe the Lock status of the receivers and the number of GNSS satellites in view. Before GNSS lock is acquired, the status will be "Tracking" and the number of

Page #:	8 of 43	www.novuspower.com	
---------	---------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

satellites will be shown. When GNSS lock is acquired, the status will change to "Lock."

Time and Date: The time zone will be UTC by default, but the hour can be offset to the local time in the UTC Offset menu. Changes to UTC offset and Hour mode will be reflected on this screen but will not change the NMEA output data.

2.2 GNSS Detailed Status

The GNSS Status Menu gives the user a quick reference for the quality of the GNSS satellite signal and length of time that each receiver has been locked.

To toggle between each receiver, press the SELECT button. The screen will display which receiver status is being viewed.

The user can then see number of GPS satellites in view, number of GLONASS satellites in view, and the UTC time and date that lock occurred on the selected receiver.

2.3 Channel Status

The channel status can be determined by reading the actual RMS value on the output of each stage. This is compared to a threshold limit that is set by the user as a percentage variation from a saved value. The default variation value is set at ±25% percent from the current state of the amplifier and is user programmable in 5% increments from ±10% to ±60%.

The range of acceptable channel amplitude can be narrowed around a connected balanced line, such that a channel status below the Alert threshold indicates a shorted line, while a channel status above the Alert threshold window indicates a potential disconnected cable.

|--|

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

The threshold value at which a channel alert is triggered can be programmed on the Alert threshold screen, or programmed via the RS232 port. Once set, the unit would continue to monitor each channel and a deviation beyond the set limits would be reported as a failure on the front panel and via RS232.

The Channel Status feature can quickly detect a cabling failure. Any change in the load impedance will change the output voltage with respect to the divider formed by the output impedance of the amplifier and the load impedance. Failing cables and connectors can be detected early.

```
Channel 01: 0.86V
High Limit: 1.54V
Low Limit: 0.83V
Status: Ok
```

The current threshold limits are displayed in addition to the actual measured value. These values reflect the percentage threshold defined in the Alert threshold settings. If the output value is too low to give a valid reading. The display will read "LOW."

The status is displayed on the front panel and is accessible over the RS232 serial bus via DB9.

2.4 Status LEDs

There are three status LEDs which provide a quick indication of valid unit operation.

Alert LED: The Alert LED will illuminate flashing red to indicate A GNSS failure or a power supply failure. The Alert LED will **not** flash RED if any valid input signal is present.

Oven LED (OCXO option only): The Oven LED will illuminate red to indicate an Oven Failure.

Fault LED: The Fault LED will illuminate flashing red to indicate a channel fault, when any single channel is outside the user defined threshold.

Page #:	10 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

2.5 Power Supply Status

The power supply status screen provides DC voltage values of the two available power supply sources. The 90-250V AC input is internally connected to an internal 24V AC-DC convertor which powers the internal supplies with 24V. This is diode connected with the external 24V DC input, which can be used in addition to, or in place of, the AC input.

The values of both DC supplies are measured internally to validate connections. The measured values of the AC/DC convertor and the DC input are reported in the third and fourth fields of the second \$GPNVS status string.

For details on the status strings, see Programmer's Guide.

In addition to direct value measurements, each redundant system has a Power Supply Status byte which is reported in the third \$GPNVS status string, in the seventh and eighth fields respectively.

Any measurement of the power supply which results in an alert condition will be reported in the power supply status byte.

0x80 = External AC not connected. 0x40 = External DC not connected.

If the optional external DC Power supply is requested, redundant power supplies will operate on either the AC input or DC input, and function independently. All functionality and reporting for an individual power supply and amplifier is independent of its redundant copy.

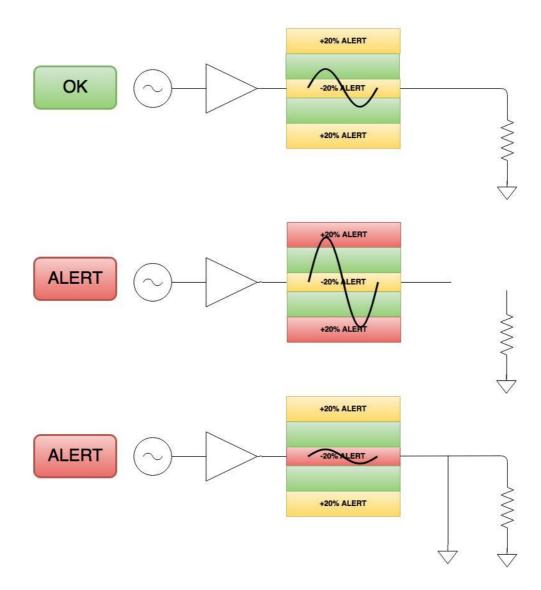
If a communications failure is reported, the backup system will automatically switch to the redundant system.

Page #:	11 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

2.6 Alert Threshold

The Alert Threshold screen allows the user to adjust the tolerance from the reference voltage which, if exceeded in either direction, the output channel will report a fault status. The default threshold value is set at ±25% percent from the current state of the amplifier, and is user programmable in 5% increments, from ±10% to ±60%.


The output channel has a reference voltage which can be set by latching the channel's current value in the Latch Channel Average Screen. The output reference voltage can be set individually by writing the value serially with the \$SET command. After saving the current configuration on a channel, any subsequent deviation on that channel which exceeds the Alert Threshold percentage will trigger an alert.

Steps to ensure correct Alert configuration:

- 1. Connect distribution cabling to the 10MHz output.
- 2. Set Alert Threshold to desired range.
- 3. Save current channel voltage with the Latch Channel Values Screen.
- 4. Save current settings on the Save Configuration screen.

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

The Alert Threshold can be optimized so that a channel short or an impedance change will cause an Alert.

Example:

The output of Channel 1 is connected to a high impedance input and reports 1.25Vrms at the output.

Page #:	13 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Alert threshold is set to +/-20%.

The current state is saved in the Save Configuration screen.

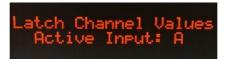
The Channel 1 alert will report when:

- The Channel 1 output is higher than 1.50Vrms
- The Channel 1 output is lower than 1.00Vrms

To adjust the Alert Threshold from the front panel, hold the NEXT and SELECT buttons down simultaneously for two seconds. The percentage value will begin flashing. To increase the value, press the SELECT button. To decrease the value, press the NEXT button.

When the desired value is reached, press the NEXT and SELECT button simultaneously to leave the settings mode.

The Alert Threshold settings can be modified via the RS232 serial port with the \$FLTTHR command.


For details on the Alert Threshold, see Programmer's Guide.

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

2.7 Latch Channel Value

The Latch Channel Values screen allows the user to save the current channel output value for use as the Reference Value for Alert settings.

A channel Alert is triggered when the channel output voltage exceeds or falls below a percentage of the Reference Value. This reference value is 1.10Vrms as a default but can be set by the user.

There are two ways to set the Reference Voltage. The RS232 serial port allows for setting an individual channel's reference voltage with the \$SET command. The user can also use the Latch Channel Values to take a snapshot of all current outputs and use these as the reference values.

2.8 Save Configuration

The Save Configuration screen allows the user to save the current settings for alert threshold, input threshold, attenuation, input select, reference voltage and any other settings that have been modified via the RS232 port.

To save the current settings, press the SELECT button twice.

The Save Configuration action is equivalent to the \$SAVEFL command on the serial port.

Page #:

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

2.9 Fault Status

The Fault Status screen allows a quick overview of any channel faults from the front panel.

Press SELECT to advance to the System Fault screen.

The System Fault screen indicates any failures in the primary system or the redundant backup system. All internal power supplies are monitored (24V, +8V, -8V, 5V) on both the primary and backup systems. A failure on one of these supplies will be indicated with a "PS FAIL" fail warning for either system. A communication failure would be indicated by a "Com FAIL" indicator. Either of these fault statuses will result in the change of the primary to the backup system. The individual statuses of the internal power supplies are also available via the RS232 serial port.

The presence of a valid DC input voltage is indicated on this screen, as well as a valid AC power input. If either of these supplies are not present, a "FL" indication will be shown next to the appropriate input.

ge #:	16 of 43	www.novuspower.com	
-------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

2.10 UTC Mode

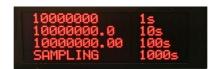
The user can select how the time is displayed on the screen by choosing between three formats: UTC, 24 hour mode, or 12 hour mode. Toggle through the modes by pressing the SELECT button.

If 24 hour mode or 12 hour mode is chosen, the GMT offset will be applied to the displayed time. If GMT mode is selected, no offset will be applied to the displayed time.

2.11 GMT Offset

With 24 hour mode or 12 hour mode, the user can choose to align the displayed hour with their current time zone. Using the SELECT button, toggle to the desired offset. The offset will decrement through the 24 hour period, from UTC-11 to UTC +12, etc.

Adjusting the GMT offset will affect the displayed date. As the hour moves across the International Dateline, the displayed date will reflect the date in the selected time zone, and not necessarily the GMT date.


Page #:	17 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

2.12 Frequency Display (Dual Time Base option)

The average frequency of each gate can be monitored at this screen, allowing the user to see the most recent sample from the 1, 10, and 100 second gate.

If the NR1310 loses GNSS lock, the frequency counts will flash to alert the user that GNSS lock has been lost. The holdover capability will continue to provide a stable frequency reference during this period within the specifications listed in the Technical Specifications section. When lock is acquired, the NR2110 will continue counting, and the most recent counts will again be displayed.

2.13 Time and Frequency Display (Dual Time Base)

Displays time and best evaluated frequency measurement.

Page #:	18 of 43	www.novuspower.com
---------	----------	--------------------

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

2.14 CAN Bus Identifier

The NR2110D can be ordered with an optional CAN bus connection for communication with a ND series distribution amplifier. If this option is present, the distribution amplifier will query for the identification of source inputs by signaling via the output amplitude to indicate which input is A and which is B. After this identification is made, the CAN Bus Identifier screen will display "Input A" or "Input B." The screen will display "Not Connected" prior to identification or if connection is lost.

2.15 Power Switch

The front panel Power Switch controls AC power input to the unit. If the <u>optional</u> DC input is provided with 24V, or a valid DC supply, the unit will operate. In other words, the rear panel switch will not remove the DC power.

The AC and DC input option provides a redundant and automatic backup source in the case of failure of either input.

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

3.0 Rear Panel

3.1 Channel Output - BNC

There is a single 10MHz output on the rear panel, BNC 50Ω . This is a sine wave. Square wave can be ordered as an <u>option</u>. Nominally the outputs are 50 Ohm impedance. In the redundant configuration, the output is the relay selection of the active amplifier. The redundant unit has two complete amplifier assemblies which are powered and available to be substituted if a failure occurs on either the primary or secondary input. The active amplifier is selected and connected to the BNC through a solid-state relay.

3.2 Antenna Input A/B - SMA

SMA female – Internal 3.3V supply, 45mA max.

3.3 DC Input

The <u>optional</u> DC input connector is a 3-pin Amphenol circular connector, P/N DL3102A10SL-3P. The mating connector is available as P/N DL3106A10SL-3S. The default DC input voltage is 24Vdc. Custom voltage ranges can be provided from -60Vdc to +60Vdc.

Pin A goes to the most negative voltage of the DC source. For a 24V source input this would be the ground or return output from the DC source.

Pin B goes to the most positive DC voltage of the DC source. For a 24V source input this would be the positive output from the DC source.

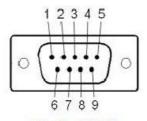
Pin C goes to the Earth ground of the DC source.

Page #:	20 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

3.4 AC Input

The AC input accepts 90-250Vac, 50-60Hz. IEC 320-C14 Compliant.


3.5 RS232 DB9 (Status or NMEA: Factory Set)

An RS232 port is provided for local status monitoring, or NMEA output from the GNSS receiver. The RS232 port is configured at the factory for either Status or NMEA, as defined by the customer.

Status: The embedded processor provides status strings as well as command responses. Configuration and status commands are detailed in the NR2110 Programmer's Manual Section 5.0.

NMEA: The GPS/GNSS receiver provides NMEA-0183 formatted serial data.

RS232 Serial Port: Rear Panel Pin Connections

Male DB-9

Pin	Function	I/O
1	NC	
2	TX	0
3	RX	1
4	NC	
5	GND	GND
6	NC	
7	NC	
8	NC	
9	NC	

Page #:	21 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Status Configuration: The default settings for the rear panel RS232 port are 115200 baud, 8 bits, 1 stop bit, no parity.

NMEA Configuration: The default settings for the rear panel RS232 port are 38400 baud, 8 bits, 1 stop bit, no parity.

3.6 Ethernet Port / Serial-Ethernet Bridge

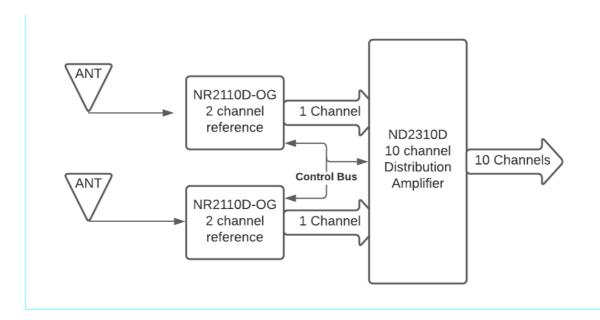
An optional Serial-to-Ethernet bridge can be installed to handle communication remotely. The same serial commands and status output are present through the Ethernet bridge as the RS232 connection.

The default Ethernet connection is through a Neturner SB70 device which can be easily configured through a standard web browser and then, communication with the unit can be SSH/SSL.

Further information can be found on the Netburner website:

http://www.netburner.com/products/serial-to-ethernet/sb70-lc

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221


3.7 Distribution Amplifier Cabling - Synchronizing Two NR2110D-O/G and ND2310D:

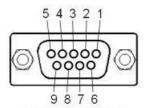
A partially redundant ten channel reference system can be implemented with two single channel sources and a ten-channel distribution amplifier. While not a completely redundant system, this configuration provides a high level of redundancy at a lower cost than a fully redundant system.

The Novus ten channel distribution amplifier will accept two sources. In this case, the two sources will be the Novus NR2110D-O/G single channel GNSS locked frequency references. Each of the single channel sources will be connected to the A or B input channels of the ND2310D distribution amplifier.

Each of these input sources will be monitored for amplitude and, if in the AUTO mode, the ND2310D distribution amplifier will select the active channel. However, amplitude is not a sufficient test for a redundancy decision. What if both sources were active, but one was GNSS-locked and the other had lost GNSS-lock for some reason? An amplitude test would not be able to detect this condition.

To handle this case, and others that go beyond amplitude, Novus has a proprietary CAN bus between the three units. This CAN bus communicates, lock, BIT, loop lock and other parameters so the ND2310 can make a redundancy selection.

Page #:	23 of 43	www.novuspower.com	
---------	----------	--------------------	--

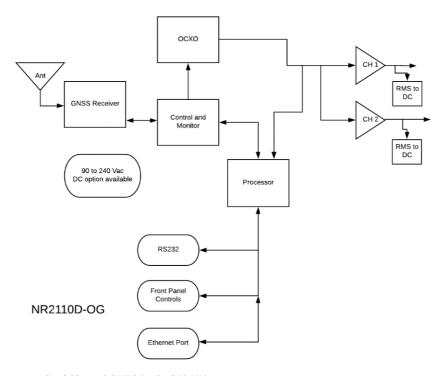


USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

3.8 CAN Connector

The NR2110 has an <u>optional</u> CAN bus connection for interrogation from an external controller ND2310 distribution amplifier. The bus provides proprietary status signaling to ensure input status is known, including BIT, GNSS lock, holdover status, and health of the input source.

The CAN bus features a female DB9 connector to connect a CAN splitter cable. The connections are intended to be parallel across the ND2310 distribution amplifier and up to two NR2110/NR2310 GNSS-locked references

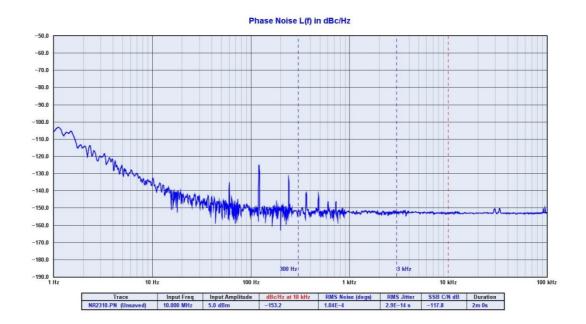

Female DB-9

Pin	Function	1/0
1	NC	
2	CAN_L	I/O
3	CAN_GND	GND
4	NC	
5	NC	
6	NC	
7	CAN_H	I/O
8	NC	
9	NC	

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

4.0 Functional Description

Dual Channel GNSS Locked 10 MHz Rubidium Reference


Page #: 25 of 43 www.novuspower.com

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

4.1 Phase Noise

Low phase noise contribution is achieved through careful PCB design, component selection and minimization of power supply noise. Below is a typical phase noise performance for a 10 MHz reference application:

4.2 Outputs

Each output is fault and electrostatic discharge protected. Each output is independent and any output can be faulted for an indefinite period of time with no permanent damage. Each output is connected to a monitor circuit that detects a local fault on the output. The fault status is indicated on the front panel or remotely.

4.3 Built-in Test

There are number of power supplies in the design to meet special needs and noise reduction. All power supply voltages are monitored and can be accessed via RS232 or <u>optional</u> Ethernet. In addition, all current channel statuses, or Vrms values, can be monitored, as well as power supply health.

Page #: 26 of 43	www.novuspower.com
-------------------------	--------------------

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

4.4 Power Supplies

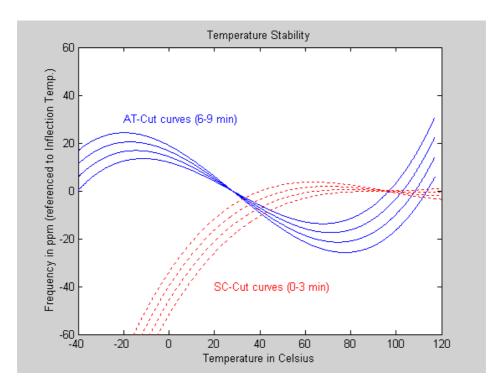
The unit is designed to accept power in the range of 90 to 264Vac, 50 to 60 Hz. This allows global application. The design is such that no action need be taken to operate from global power types. This feature avoids installation damage that occurs in designs that require an input power switch mode be used.

There is an EMI filter between the internal power supply and the available power being used. This filter minimizes the electrical noise from entering the circuitry and negatively impacting noise performance. Also, in most applications, the equipment that surrounds this unit is sensitive and the filter also reduces noise that could impact the performance of other equipment.

If the <u>optional</u> DC power option is installed, the unit can be powered from nominal 24 Vdc. The output of the DC to DC converter is effectively diode OR'd with the AC supply and the DC power supply becomes the prime when the AC power fails.

5.0 Crystal

Novus crystal-based frequency reference products are based upon either TCXO or OCXO technology. Temperature compensated crystal oscillators will normally use an AT cut crystal and electronically compensate the device with temperature. An OCXO device uses a SC (stress compensated) crystal, and the part is held at a fix temperature to minimize temperature drift.


The TCXO implementation results in a temperature-stable reference in the single digit parts-per-million. An OCXO device affords a reference that is almost 2 orders of magnitude more stable than the TCXO.

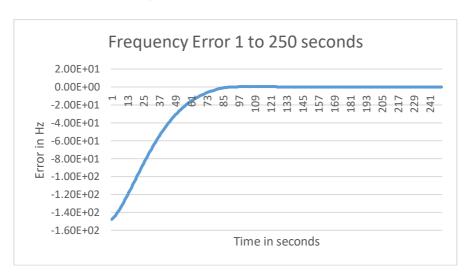
Page #:	27 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

COMPARISON OF AN AT VERSUS A SC CUT CRYSTAL

Over a broad temperature range, an AT performs very well and much easier to compensate electronically. It is also a simpler crystal to manufacture than a SC cut device. For applications where a stability of a few ppm is acceptable, a TCXO can be a cost-effective alternative.

The SC cut results in a much higher Q device and achieves much lower phase noise than the AT cut. The device is also more sensitive to pressure and temperature variation and is mounted in temperature controlled hermetic chamber.


OCXO oven temperature is in the range of 90°C. The devices heat-up and become stable within ~ 5 minutes.

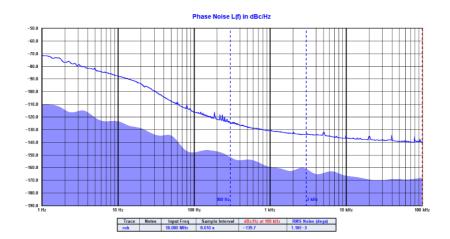
Page #:	28 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

OCXO FREQUENCY ERROR FROM COLD START

TYPICAL OCXO

Page #:	29 of 43	www.novuspower.com

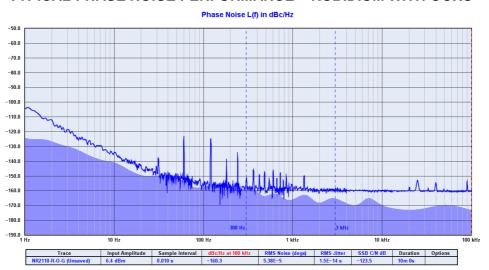


USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Another alternative for a frequency reference is an atomic reference. These devices use a change in atomic state of an isotope of Cesium or Rubidium for stability. Instead of a stability of ± 50 ppb/year for a typical OCXO, stability of ± 1 ppb/year is very common.

Atomic sources are very complex and, while a very stable source, phase noise performance may not be acceptable for many applications.

TYPICAL PHASE NOISE PERFORMANCE FOR A RUBIDIUM SOURCE


For applications requiring the stability of an atomic source but also requiring low phase noise, a low phase noise OCXO is disciplined to an atomic source. The phase noise for the NR2110-R/O has phase noise improved by well over 20 dB by this technique.

Page #:	30 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

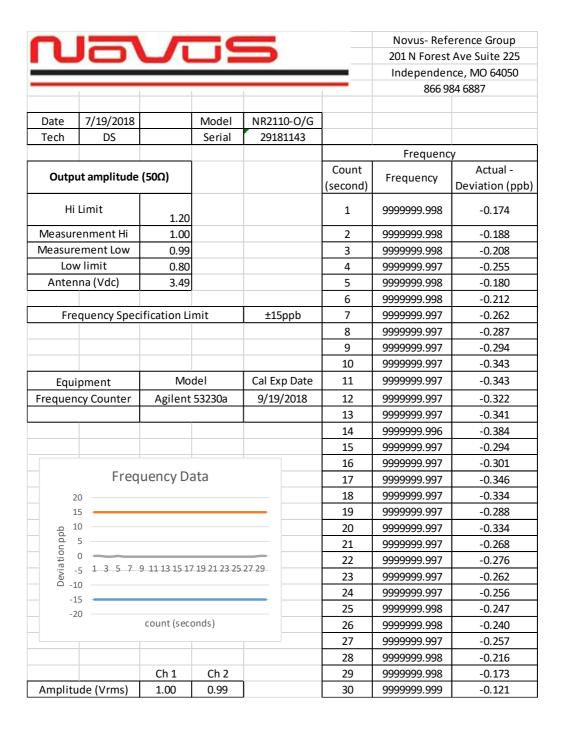
TYPICAL PHASE NOISE PERFORMANCE - RUBIDIUM WITH OCXO

When the stability of an atomic or crystal source is not sufficient a GNSS disciplined source is an option. A GNSS receiver is installed and timing information from the GNSS is used to discipline the timing device. Timing accuracy to a few ppb is readily achievable.

The GNSS is used to provide timing for a DDS (direct digital waveform synthesizer). While the DDS has outstanding long-term accuracy, the short-term stability is very poor due to the nature of the timing source. A GNSS timing source has considerable short-term instability due to the numerous radio effects-multi-path, signal weakness etc. In order to develop a stable reference, the GNSS timing waveform is used to discipline a low noise source with a Kalman filter. A good example of the improved jitter performance of a Kalman filter is shown below:

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

KALMAN FILTER PERFORMANCE



Page #: 32 of 43 www.novuspower.com

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

Typical acceptance testing data for the NR2110 GNSS-Locked Reference

: 33 of 43

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

6.0 Calibration

The frequency is phase-locked to the GNSS signal and no adjustment is required.

The Auto-Calibration feature tunes the OCXO and stores the calibration coefficients in non-volatile memory.

Annual calibration to insure amplitude and the operating point for the OCXO is within steering range is recommended.

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

7.0 Programming Guide (RS232 Port: Status Only)

The NR2110 can accept user commands which will provide specific fault detection performance which may be customized by the user. The settings can be saved in non-volatile flash memory.

This section is for the status commands, when the NMEA/Status port has been configured for status output, instead of NMEA output. In addition to the STATUS RS232 port, a unit configured with the serial to ethernet option can access these commands.

If the user makes changes which are intended to be kept between power off cycles, the command "\$SAVEFLASH*51 <cr><|lif>" will update flash to reflect all current settings.

Table 1 shows a complete list of input commands and descriptions. In general, a command may be input without "=" or an additional value, and the unit will respond with the current setting's value. If the input is not understood, the microcontroller will return the value "\$?*3F<cr><lf>"

NOTE: All commands should be prefixed with "\$", and followed by <cr><lf>. Checksum can be enabled which requires the command to be followed by an asterisk (*) and a two-digit hex value.

Example: \$<COMMAND>*XX<cr><lf>.

The checksum can be required all input commands, and the requirement for a checksum can be enabled or disabled (default setting is disabled). The checksum method is the two-hexadecimal character representation of an XOR of all characters in the sentence between, but not including, the \$ and the * character.

Example: \$NVS1=1*76

All responses will be formatted in the following format: \$GPNVS,R,n,<response>*XX<cr><lf>.

Communication with the unit follows the outlined \$GPNVS Status String format outlined in Appendix C.

Page #:	35 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G	
REVISION	С	
DATE	072221	

7.1 RS232 Commands (Status Only, for GNSS, see Append. A)

Setting	Command	Response	Description
RS232 REAR PANEL BAUD RATE (STATUS OUTPUT ONLY)	\$BAUDNV	\$BAUDNV= <current baud="" rate=""></current>	Query Baud Rate on rear panel RS232. (Default = 115200). Front Panel is 115200 baud.
	\$BAUDNV=38400		Assign Baud rate to Rear Panel RS232 port. Default is 115200. Available baudrates are 9600, 19200, 38400, 57600, 115200, 230400. Note: Front panel baud rate is set to 115200.
CHANNEL FAULT THRESHOLD FACTOR	\$FLTTHR \$FLTTHR	\$FLTTHR= <current channel="" fault<br="">threshold factor (from 0.05 to 0.95)></current>	Query or set the ratio at which the Channel output
	\$FLTTHR=0.15		monitors report a fault. For example, if the FLTTHR is set to "0.15", the Channel Fault Word will report an error if the measured value is greater or less than ±15% of its target value. Number format must be in the form <n.nn></n.nn>
INPUT LOW THRESHOLD VALUE (NDxxxx ONLY)	\$INPTHR	\$INPTHR= <current inputthreshold<br="">(from 0.05V to 1.00V)></current>	Query or set the absolute voltage at which the Input
	\$INPTHR=0.20		monitor reports a llow input fault. For example, if the THR is set to "0.3", the Channel Fault Byte will report an error if the measured Vpp is lower than 0.3V.

Setting Command		Response	Description	
SET INDIVIDUAL CHANNEL REFERENCE VOLTAGE	\$SET <nn>=n.nn VIDUAL \$SET01=1.00 \$SET02=1.00 \$SET02=1.00 \$SET<nn< td=""><td>Response \$SET<nn>=nn.nn</nn></td><td>Set or query the Reference Voltage for a perticular channel with respect to the active input. Use in combination with the Channel Fault Threshold Factor to define Alert on an individual Channel. Reference Voltages are set with respect to the active input, allowing for variation in amplitude between Input A and Input B. Example: Set Channel 4 to Alert if it is beyond +/-20% of 0.90Vrms when relayed to Input A: \$SET04=0.90<cr><lf></lf></cr></td></nn<></nn>	Response \$SET <nn>=nn.nn</nn>	Set or query the Reference Voltage for a perticular channel with respect to the active input. Use in combination with the Channel Fault Threshold Factor to define Alert on an individual Channel. Reference Voltages are set with respect to the active input, allowing for variation in amplitude between Input A and Input B. Example: Set Channel 4 to Alert if it is beyond +/-20% of 0.90Vrms when relayed to Input A: \$SET04=0.90 <cr><lf></lf></cr>	
			\$FLTTHR=0.20 <cr><lf> (To set all channel Reference values to their current average amplitude, use the Latch Average Channel Values command.)</lf></cr>	
	\$LATCHAVG	\$LATCHAVG= <currently input="" selected=""></currently>	Latches the current Channel Vrms measurement averages into memory as the average value to set	

Page #:	36 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

LATCH AVERAGE CHANNEL VALUES			the Channel Fault Threshold for each channel. Latches in all outputs with respect to the active input. Example: Response of "LATCHAVG=A" indicates input A is active, and the channel fault thresholds for Input A will now measure against the current output values. Use this command during setup, after cabling, to take a snapshot of the nominal system state.
NVS1 OUTPUT	\$NVS1	\$NVS1= <current output<="" rmc="" td=""><td>Query NVS1 String output Frequency. (Default = 1)</td></current>	Query NVS1 String output Frequency. (Default = 1)
NV31 OUTFOT	\$NVS1=1	frequency>	Change NVS1 String output Frequency in seconds. (0-60)
NVS2 OUTPUT	\$NVS2	\$NVS2= <current output<="" rmc="" td=""><td>Query NVS2 String output Frequency. (Default = 1)</td></current>	Query NVS2 String output Frequency. (Default = 1)
NV32 001P01	\$NVS2=1	frequency>	Change NVS2 String output Frequency in seconds. (0-60)
NVS3 OUTPUT	\$NVS3	\$NVS3= <current output<="" rmc="" td=""><td>Query NVS3 String output Frequency. (Default = 1)</td></current>	Query NVS3 String output Frequency. (Default = 1)
\$NV\$3=1	frequency>	Change NVS3 String output Frequency in seconds. (0-60)	
NVS4 OUTPUT	\$NVS4	\$NVS4= <current output<="" rmc="" td=""><td>Query NVS4 String output Frequency. (Default = 1)</td></current>	Query NVS4 String output Frequency. (Default = 1)
(OPTIONAL) \$NVS	\$NVS4=1	frequency>	Change NVS4 String output Frequency in seconds. (0-60)

Setting	Command	Response	Description
	\$CAL <n>=nn.nn</n>		Query or set Cal Factors for specific ADC
CAL FACTORS	\$CAL1=11.10	\$CAL <n>=nn.nn</n>	conversions. See list of Cal Factors numbered for appropriate measurement parameters. These settings should only be changed by an authorized technician.
SAVE ALL CAL FACTORS TO FLASH MEMORY	\$SAVECAL	\$SAVED CAL. \$SAVE CAL FAILED.	This command will translate all Calibration Factors to flash string and write. Data is then read back for verification, and result reported. This will update Cal Factors in flash to the current Cal Settings.
ALLOWED	\$FRAL		
FREQUENCY DEVIATION	\$FRAL=200	\$FRAL=200	(For Dual Time Base only) This command changes the range of frequency allowed without an alarm. Allowed range is 0-240, units are 0.0083Hz.
GPS/GNSS COM SETTING	\$GPSTX	\$GPS_NO_TX \$GPS_FRONT_NB \$GPS_REAR	(GNSS Locked Only) This command enables communication to the internal GPS/GNSS receiver directly, if the port is a GPS listening port. (This is

Page #: 37 of 43	www.novuspower.com	
------------------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

	\$GPSTX=0		enabled for S/N higher than 1517xxxx). 0 = Transmit to GPS disabled. 1=Transmit to GPS enabled via Front Panel (optional) or ethernet port (optional). 2=Transmit to GPS enabled via Rear Panel.
	\$STAT <n></n>	<\$GPNVS,1>	Query NVS <n> String. Useful for status output on demand when user does not require regular string output.</n>
STATUS OUTPUT	\$STAT1		Outputs current \$GPNVS,1 string on demand.
	\$STAT2	<\$GPNVS,2>	Outputs current \$GPNVS,2 string on demand.
	\$STAT3	<\$GPNVS,3>	Outputs current \$GPNVS,3 string on demand.
ACTIVATE FRONT PANEL STATUS	\$ACTFRP=1	\$ACTFRP=n	Set Front Panel RS232 to automatically output
STRINGS	\$ACTFRP=0	•	\$GPNVS strings. 1 = Enable, 0 = Disable (Default)
SAVE ALL VALUES TO FLASH MEMORY	\$SAVEFLASH	\$SAVED TO FLASH. \$FLASH SAVE FAILED.	This command will translate all current variables to flash string and write. Data is then read back for verification, and result reported.
RESET ALL TO DEFAULT	\$RESETALL	\$RESET FLASH VARIABLES.	Resets all user settings to default values and overwrites flash memory with defaults.
INVALID INPUT		\$?	Command not recognized.
REQUIRE	\$CSUM		Query or set mandatory checksum on all incoming
CHECKSUM \$CSUM=1	\$CSUM=1	\$CSUM= <current csum=""></current>	STATUS port communication. 1 = Enabled, 0 = Disabled. Default = 0.

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

8.0 Technical Specifications

10MHz Sine	2- 1.0 Vrms, 50 Ohm - BNC	
Harmonics	Less than -30dB	
First Year Frequency Stability	± 50 ppb (unlocked)	
Temp Stability	±10 ppb (unlocked)	
Daily Aging OCXO	±5 ppb/day (unlocked)	
Yearly Aging	±30ppb (unlocked)	
Phase Noise		
Offset Hz		
10		
100		
1000		
10000		
PPS		
Amplitude for 1PPS	3.3 Vdc CMOS (5 Vdc option)	
Pulse width for 1PPS	Programmable 1 to 500ms in 1 ms steps	
Rise time for 1PPS	<10 ns (faster edge available)	
Connector	SMA	
Load Impedance	50 Ohm	
Location	rear	
Remote interface & control		
Protocol	RS232 NMEA-0183	
Connector	DB-9	
Location	Rear panel	
Protocol	Bit plus stop	
Standard Baud Rates	Selectable 4800, 9600, 19200, 38400, 57600 or 115200 bps	
Connectivity	Ethernet: 10/100M RJ-45	
SNMP	v2	
GNSS receiver	GPS L1 C/A, GLONASS L1OF, QZSS L1 C/A, SBAS L1 C/A	
	(Ready): Galileo E1B/E1C, QZSS L1S	
Channels	26 channels (GPS, GLONASS, QZSS, SBAS)	
Sensitivity		
GPS	Tracking: -161 dBm	
	Hot Start: -161 dBm	
	Warm Start: -147 dBm	
	Cold Start: -147 dBm	
	Reacquisition: -161 dBm	
GLONASS		
	Tracking: -157 dBm	

Page #:

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

	Hot Start: -157 dBm	
	Warm Start: -143 dBm	
	Cold Start: -143 dBm	
	Reacquisition: -157 dBm	
	With Novus recommended antenna	
Recommended Antenna with		
LNA		
Antenna Power	3.5 Vdc, < 35 mA (on center conductor) (factory configurable to 5 Vdc)	
Frequency	1574-1607 MHz	
Nominal Gain	2 dBic	
Amplifier Gain	26 dB	
Noise Figure	< 2.0 dB	
Out of Band Rejection	Fo±50MHz=60 dBc, Fo±60 MHz	
DC Current	<25 mA@3.5 Vdc	
Accuracy-Auto-Cal (24 hrs.)	<2E-11	
Alert	Status indicator and relay contacts via rear panel BNC	
Power Requirements	90 to 264 Vac, 50/60hz	

Environmental and Mechanical

Operating Temperature	0 to 50°C non-condensing (extended temperature range available)
Storage Temperature	-40 to 85°C
Height	1.73" 1 RU
Width	19.0"
Depth	10.0"
Weight	~5 lbs.

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

9.0 LIMITED HARDWARE WARRANTY

Novus Power Products (hereinafter Novus) warrants its products to the original end user ("original purchaser") and warranty is not transferrable. Novus guarantees that the NOVUS hardware products that you have purchased from NOVUS are free from defects in materials or workmanship under normal use during the LIMITED WARRANTY PERIOD. The LIMITED WARRANTY PERIOD starts on the date of shipment and for the period of 1 (one) year to be free from defects caused by faulty materials or poor workmanship, provided:

- (a) NOVUS is notified in writing by Buyer of such defect prior to the expiration of the warranty period, and (b) after receiving return authorization –RMA- from NOVUS, the defective item is returned with transportation prepaid to NOVUS, Independence, Missouri, with transportation charges prepaid by Buyer ...see RMA policy in Terms and conditions, and
- (c) NOVUSs' examination of such unit shall disclose to its satisfaction that such defect(s) exist and have not been caused bisuse, neglect, improper installation, improper storage, unauthorized modifications, inadequate maintenance, operation outside the environmental specifications for the product, repair alteration, or accident. NOVUS assumes no risk or liability for results of the use of products purchased from it, including but without limiting the generality of the foregoing: (1) the use in combination with any electrical or electronic components, circuits, systems, assemblies or any other materials or substances; (2) unsuitability of any product for use in any circuit or assembly. Removal or tampering with tamper-proof label on merchandise will void warranty coverage unless with the written authorization from NOVUS
- (d) an evaluation fee will be charged to Buyer to cover inspection and testing costs for any item returned by Buyer under this paragraph which is found to be within specifications and/or otherwise not the responsibility of NOVUS under the terms and conditions of this paragraph or any other part of this Agreement..

Your dated sales or delivery receipt is your proof of the purchase date. You may be required to provide proof of purchase as a condition of receiving warranty service. You are entitled to hardware warranty service according to the terms and conditions of this document if a repair to your NOVUS product is required during the limited warranty period. Our obligation at NOVUS is limited to repair or replace products which prove to be defective.

Should Novus be unable to repair or replace the product within a reasonable amount of time, the customer's alternate remedy shall be a refund of the purchase price upon return of the product to Novus. The liability of NOVUS under this warranty is limited to replacing, repairing or issuing a credit, at its option, for any such item returned by Buyer under the terms of this warranty.

EXCLUSIONS: The above warranty shall not apply to defects resulting from improper or inadequate maintenance by the customer, customer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product or improper site preparation and maintenance (if applicable). For probes, cables, antennas and accessories, the warranty period is 90 (ninety) days.

PRODUCT SPECIFICATIONS: Published specifications whether contained herein or in any other materials or documents distributed to Buyer by Novus do not become final or binding on NOVUS until approved by NOVUS. NOVUS expressly reserves the right to change or modify specifications at any time without prior notice.

Page #:	41 of 43	www.novuspower.com	
---------	----------	--------------------	--

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

WARRANTY LIMITATIONS: NOVUS MAKES NO OTHER WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS PRODUCT. NOVUS SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN ALL CIRCUMSTANCES NOVUS' MAXIMUM LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE PRODUCTS SOLD. NOVUS SHALL NOT, UNDER ANY CIRCUMSTANCES BE LIABLE UPON A CLAIM OR ACTION IN CONTRACT, TORT, INDEMNITY OR CONTRIBUTION OR OTHER CLAIMS RELATING TO THE PRODUCTS IT SELLS WHICH EXCEEDS THIS LIABILITY LIMIT. NOVUS SHALL NOT BE LIABLE FOR THIRD PARTY CLAIMS FOR DAMAGES AGAINST THE CUSTOMER, OR FOR MALFUNCTION, DELAYS, INTERRUPTION OF SERVICE, LOSS OF BUSINESS, LOSS OR DAMAGE TO EXEMPLARY DAMAGES, WHETHER OR NOT NOVUS HAS BEEN MADE AWARE OF THE POSSIBILITY OF SUCH CLAIMS OR DAMAGES.

LIMITATION OF REMEDIES: REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL NOVUS BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA OR BUSINESS INFORMATION (OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE HARDWARE SUPPLIED THEREWITH EVEN IF NOVUS OR ANYONE ELSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

EXCLUSIVE REMEDIES: THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMERS' SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL NOVUS BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONNSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

USERS MANUAL	NR2110D-O/G
REVISION	С
DATE	072221

10.0 Appendix A: GNSS Command Reference

See attached appendix A.

(NOTE: UNITS WITH S/N LOWER THAN 1517xxxx SHOULD NOT CHANGE BAUD RATE ON GNSS RECEIVER. BAUD RATE MUST BE 38400.)

11.0 Appendix C: \$GPNVS Status Strings

See attached appendix C.

12.0 Appendix F: SNMP Reference

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Users Manual Appendix A

Appendix A

GPS/GNSS Receiver Communications Specification NMEA-0183

All information provided herein is the proprietary property of Novus Power Products L.L.C. The information included may be reproduced without the permission of Novus Power Products L.L.C. without prior approval for purpose of operating the equipment.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Table of Contents:

1	. COMMUNICATION SPECIFICATION	4
2	SERIAL DATA OUTPUT TIMING ^4	5
3	NMEA SENTENCE FORMAT	6
4	PROPRIETARY SENTENCE FORMAT:	7
5	STANDARD NMEA OUTPUT SENTENCES	8
	GGA — GLOBAL POSITIONING SYSTEM FIX DATA FORMAT:	9
	GLL — GEOGRAPHIC POSITION - LATITUDE/LONGITUDE 46	10
	GNS — GNSS FIX DATA FORMAT:	11
	GSA – GNSS DOP AND ACTIVE SATELLITES Δ4	12
	GSV – GNSS SATELLITES IN VIEW 4	
	RMC − RECOMMENDED MINIMUM NAVIGATION INFORMATION 6	15
	VTG — COURSE OVER GROUND AND GROUND SPEED FORMAT:	
	ZDA — TIME & DATE FORMAT:	17
6	PROPRIETARY NMEA INPUT SENTENCES	
	GNSS — SATELLITE SYSTEM CONFIGURATION ^4^8	19
	FIXMASK — SETTING OF POSITIONING AND SATELLITE MASK 4	20
	PPS — SETTING OF PPS (PULSE PER SECOND) △4 FORMAT:	22
	RESTART - RESTART COMMAND A FORMAT:	24
	TIME — SETTING OF TIME INFORMATION △4	25
	TIMEZONE — LOCAL ZONE TIME ^4	26
	SURVEY - Position Mode 41 Format:	27
	FREQ — SETTING OF GCLK FREQUENCY \$\triangle 2 \triangle 7 FORMAT:	31
	DEFLS — SETTING OF DEFAULT LEAP SECOND ^4 ^6 FORMAT:	32
	TIMEALIGN — SETTING OF TIME ALIGNMENT ^4 FORMAT:	33
	RESTRICTION:	
	FLASHBACKUP — SETTING OF BACKUP IN FLASH 4 FORMAT:	35
	CROUT — SETTING OF CR OUTPUT FORMAT:	36
7	CFG — SETTING OF APPLICATION SOFTWARE	37
	NMEAOUT – STANDARD NMEA OUTPUT 49	37
	UART1 – Serial Communication Port Format:	37
	SYS — PVT System	39
	GPIO – GENERAL PURPOSE INPUT/OUTPUT FORMAT	39

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

8	PROPRIETARY NMEA OUTPUT SENTENCES	40
	ACK — OUTPUT THE COMMAND RECEPTION CHECK FORMAT:	40
9	CR — ERIDE GNSS CORE LIBRARY INTERFACE	41
	CRW(TPS1) – OUTPUT TIME TRANSFER INFO PER SECOND (DATE AND LEAP SECOND) 445 FORMAT:	41
	CRX(TPS2) — OUTPUT TIME TRANSFER INFO PER SECOND (PPS) △4 FORMAT:	44
	CRY(TPS3) — OUTPUT TIME TRANSFER INFO PER SECOND (SURVEY &TRAIM) FORMAT:	46
	CRZ (TPS4) — OUTPUT TIME TRANSFER INFO PER SECOND (FREQUENCY) \(^3\) FORMAT:	48
	CRM – MEASUREMENT DATA OF GPS	50
	CRN – Navigation Data	51
	SYS – Answer of PVT System	52
	GPIO- GENERAL PURPOSE INPUT/OUTPUT FORMAT:	52
	FIXSESSION- FIX SESSION A 1 FORMAT:	
	ANTSEL- ANTENNA SELECTING A 1 FORMAT:	53
	BBRAM - BATTERY BACKUP RANDOM ACCESS MEMORY ^1 FORMAT:	54
	MSG – EVENT DRIVEN MESSAGE A1 FORMAT:	54
10	0 BACKUP OF THE RECEIVER PARAMETERS (FOR BBRAM) △4	55

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

1 Communication Specification

Signal Lines used: TXD, RXD Flow Control: None

System: Full Duplex Asynchronous

Speed: Configurable, Default 38400 bps (*1)

Start Bit: 1 bit
Data Length: 8 bits
Stop Bit: 1 bit
Parity Bit: None
Data Output Interval: 1 second

Character Codes used: NMEA-0183 Ver.4.10 data based

ASCII code (*2) Protocol: Input data

NMEA Standard sentence NMEA Proprietary sentence

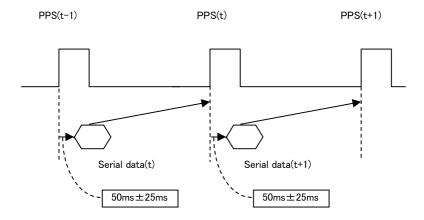
Output data

NMEA Standard sentence NMEA Proprietary sentence

Note 1: Communication speed can be changed into 4800, 9600, 19200, 38400, 57600 or 115200 bps.

Please refer to section "UART1 – Serial Communication Port" for how to configure the communication speed. In case of using low baud rate, please adjust size of output sentence by NMEAOUT command and CROUT command to output all sentence within one second.

Note 2: "NMEA 0183 STANDARD FOR INTERFACING MARINE ELECTRONIC DEVICES Version 4.10" (NATIONAL MARINE ELECTRONICS ASSOCIATION, June, 2012)



Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

2 Serial data output timing 4

The output timing of serial data is synchronous with PPS output timing. Serial data is begun to output in the 25ms to 75ms range after PPS is output.

The time of serial data indicates next PPS output timing.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

NMEA Sentence Format

13.1 Standard Sentence

Format:

\$	<address field=""></address>	,	<data field=""></data>		* <checksum field=""></checksum>	<cr></cr>	<lf></lf>
•	5 bytes		_	•	_	•	

Field	Description
\$	Start-of Sentence marker
<address field=""></address>	5-byte fixed length. First 2 bytes represent a talker ID, and the remaining 3 bytes do a sentence formatter.
	All output sentences must begin with a "\$" followed by a TalkerID. The relevant Talker IDs are GP for GPS, GN for GNSS, GL for GLONASS and GA for Galileo.
	For the sentences received from external equipment, the GT-87 accepts any talker ID. Talker ID "XX" found on the succeeding pages is a wildcard meaning "any valid talker ID".
<data field=""></data>	Variable or fixed-length fields preceded by delimiter ","(comma).
	Comma(s) are required even when valid field data are not available i.e. null fields. Ex. ",,,,,"
	In a numeric field with fixed field length, fill unused leading digits with zeroes.
* <checksum field=""></checksum>	8 bits data between "\$" and "*" (excluding "\$" and "*") are XORed, and the resultant value is converted to 2bytes of hexadecimal letters. Note that two hexadecimal letters must be preceded by "*", and delimiter "," is not required before * <checksum>.</checksum>
	All output sentences have checksum.
	For input sentences, the resultant value is checked and if it is not correct, the sentence is treated invalid.
<cr><lf></lf></cr>	End-of-Sentence marker

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

4 Proprietary Sentence Format:

\$	Р	<maker id=""></maker>	<sentence type=""></sentence>	,	<data field=""></data>		* <checksum field=""></checksum>	<cr></cr>	<lf></lf>
----	---	-----------------------	-------------------------------	---	------------------------	--	----------------------------------	-----------	-----------

3 bytes 3 bytes

Field	Description
\$	Start-of-Sentence marker
Р	Proprietary sentence identifier
<maker id=""></maker>	3-byte fixed length.
	GT-87's maker ID is "ERD" meaning eRide.
<sentence type=""></sentence>	Indicates the type of sentence.
<data field=""></data>	Variable or fixed-length fields preceded by delimiter
	","(comma).
	(Layout is maker-definable.)
<checksum field=""></checksum>	8 bits data between "\$" and "*"(excluding "\$" and "*") are XORed, and the resultant value is converted to 2 bytes of hexadecimal letters. Note that two hexadecimal letters must be preceded by "*", and delimiter "," is not required before * <checksum>.</checksum>
	All output sentences have checksum.
	For input sentences, the resultant value is checked and if it is
	not correct, the sentence is treated invalid.
<cr><lf></lf></cr>	End-of-Sentence marker

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

5 Standard NMEA Output Sentences

The receiver supports eight standard NMEA output sentences (GGA, GLL, GNS, GSA, GSV, RMC, VTG and ZDA) per NMEA standard 0183 Version 4.10 (June, 2012).

By default, the RMC, GNS, GSA, ZDA, GSV and TPS sentences will be output every second. The sentences can be independently enabled and disabled using the \$PERDCFG,NMEAOUT and/or \$PERDAPI,CROUT command described later in this document, as well as use differing transmission rates.

The NMEA sentence descriptions in this sentence are for reference only. The sentence formats are defined exclusively by the copyrighted document from NMEA.

e*Ride* does populate all the fields described in the NMEA specification. Uncalculated fields are indicated as "Not Supported".

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GGA – Global Positioning System Fix Data Format:

\$XXGGA	,	hhmmss.sss ,			,	ddm	m.mm	mm	,	а	,	dddm	nm.r	mmmm	,	а	,	x	,	XX	,
1						2			3			4			5		6		7		
>	x.x , x.x , M			М	,	x.x	,	М	,	×	кхх	,	xxx	*	hh	<(CR>	<	<lf></lf>]	
	8		9		10		11		12			13		14							_

#.	Description	Range
1.	UTC	
	"hh": hour	00 - 23
	"mm": minute	00 - 59
2.2	"ss.sss": second	00.000 - 59.999
2-3.	Latitude	00 00
	"dd": degree	00 - 90
	"mm.mmmm": minute	00.0000 - 59.9999 N or S
4-5.	"a": North/South	N OI S
4-3.	Longitude "ddd": degree	000 - 180
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": East/West	E or W
6.	GPS Quality Indication	0 - 2
•	C. C. Quanty and and and	"0": Fix not available or invalid
		"1": Valid fix
		"2": DGPS positioning
7.	Number of satellites used for positioning	00 – 12 [*1]
8.	Horizontal dilution of precision (HDOP)	0.0-50.0
	Note: A null field is output while p	
9.	Altitude above/below mean sea-level (geo	id)
10.	Unit of Altitude, meter	М
11.	Geoidal height	
12.	Unit of Geoidal height	M
13.	Age of differential GPS data	n/a
14.	Differential reference station ID	n/a

Example:

[*1] GPS, SBAS, QZSS only. Galileo and GLONASS are not counted. Upper limit is 12.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GLL - Geographic Position - Latitude/Longitude 46

Format:

\$XXGLL ,	ddmm.mmmm	,	а	, dddmm.mmmm	,	а	,	hhmmss.sss	,	а	,	а	*hh	<cr></cr>	<lf></lf>
	1		2	3		4		5		6		7			

# 1-2.	Description Latitude	Range
1 2.	"dd": degree	00 - 90
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": North/South	N or S
3-4.	Longitude	
	"ddd": degree	000 - 180
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": East/West	E or W
5.	UTC	
	"hh": hour	00 - 23
	"mm": minute	00 - 59
	"ss.sss": second	00.000 - 59.999
6.	Status △6	A or V
		"A": Data Valid
		"V": Data Invalid
7.	Position System Mode Indication	A, D or N
		"A": Autonomous
		"D": Differential
		"N": Data Invalid

Example:

\$GPGLL,3442.8146,N,13520.1090,E,025411.516,A,A*5F

34 deg 42.8146 min N 135 deg 20.1090 min E

UTC: 02:54:11.516 Mode: Data Valid

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GNS - GNSS Fix Data Format:

\$XXGN	ıs ,	, hhmmss.sss		,	ddmı	m.mmr	nm	,	а	,	ddo	dmm.m	mmm	,	a	,	CC	,	xx	,	
			1				2			3			4			5		6		7	
	x.x	,	x.x	,	X.X	,	х		,	Х		,	Х	*hh	<	:CR	>	<lf></lf>			
_	8		9		10		11			12			13								

#.	Description	Range
1.	UTC	
	"hh": hour	00 - 23
	"mm": minute	00 - 59
	"ss.sss": second	00.000 - 59.999
2-3.	Latitude	
	"dd": degree	00 - 90
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": North/South	N or S
4-5.	Longitude	
	"ddd": degree	000 - 180
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": East/West	E or W
6.	Mode Indicator for each satellite system (
		"A": Autonomous
		"D": Differential
_		"N": Data Invalid
7.	Number of satellites used for positioning	
8.	Horizontal dilution of precision (HDOP)	0.0 - 50.0
_	Note: A null field is output while p	•
9.	Altitude above/below mean sea-level (geo	ıd)
10.	Geoidal height	
11.	Age of differential GPS data	n/a
12.	Differential reference station ID	n/a
13.	Navigation Status Indicator	S, C, U or V
		"S": Safe
		"C": Caution
		"U": Unsafe
		"V": Not Valid

Example:

\$GNGNS,004457.000,3442.8266,N,13520.1235,E,DDN,22,0.5,40.6,36.7,,,V*60 UTC: 00:44:57.000 34 deg 42.8266 min N 135 deg 20.1235 min E Status: Data Valid (GPS: differential, GLONASS: differential, Galileo: Invalid)

Number of satellites: 22 satellites HDOP: 0.5

Altitude: 40.6 meters high Geoidal height: 36.7 meters high

Navigation Status Indicator: Not Valid

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GSA – GNSS DOP and Active Satellites 4

rviillat	Fo	rm	at
----------	----	----	----

\$XXGSA	,	а	,	а	,	xx	, >	xx	,	xx	,		,	xx	,	x.x	,	x.x	,	x.x	,	h	*hh	<cr></cr>	<lf></lf>
		1		2		3		4		5	(5-13		14		15		16		17		18			

#	Description	Range
1.	Operational mode	M or A
		"M": 2D/3D fixed mode
		"A": 2D/3D Auto-switching mode
2.	Mode	1 - 3
		"1": No fix
		"2": 2D fix
		"3": 3D fix
3-14.	Satellite Numbers used for positioning	01 - 99
	Note: A null field is output unless a satelli	te is available.
15.	PDOP	0.0 - 50.0
	Note: A null field is output unless 3D-posi	tioning is performed.
16.	HDOP	0.0 - 50.0
	Note: A null field is output while positioning	ng is interrupted.
17.	VDOP	0.0 - 50.0
	Note: A null field is output unless 3D-posi	tioning is performed.
18.	GNSS System ID	n/a

Example:

\$GNGSA,A,3,09,15,26,05,24,21,08,02,29,28,18,10,0.8,0.5,0.5,1*33 \$GNGSA,A,3,79,69,68,84,85,80,70,83,,,,,0.8,0.5,0.5,2*30

2D/3D Auto-switching mode, 3D fix

Satellite used: 09, 15, 26, 05, 24, 21, 08, 02, 29, 28, 10, 79, 69, 68, 84, 85, 80, 70, 83

PDOP: 0.8 HDOP: 0.5 VDOP: 1.5

Notes: △4

- To adds extra fields to the GPGSA NMEA string to show more than 12 satellites used in the fix, please input "\$PERDAPI,EXTENDGSA,num*hh<CR><LF>". num is Number of fields for satellites used in the fix. Acceptable values are: 12-16. Default num is 12. By creating more fields for satellites used in the fix, the PDOP/HDOP/VDOP values shift by num12 fields.
- Satellite number means the follow.

Satellite number from 01 to 32 indicates GPS (01 to 32)

Satellite number from 33 to 51 indicates SBAS (120 to 138)

Satellite number from 65 to 92 indicates GLONASS (slot 01 to slot 28)

Satellite number from 93 to 99 indicates QZSS (193 to 199)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GSV - GNSS Satellites in View 4

_		-
\mathbf{E}	FP	~+ :
ГΟ		al.

LOLII	ıati																							
\$XX	GSV	,	х	,	X	,	x	,	XX	,	XX	,	xxx	,	xx	,	xx	,	xx	,	ххх	ζ,	xx	,
			1		2		3	<u>.</u>	4		5		6		7		8		9		10		11	
xx	,	XX	,	XX	xx	,	XX	,	X	х	,	xx	,	xxx	,	X	x		h	*hh	1 <	CR>	<l< th=""><th>F></th></l<>	F>
12		13	•	1	4		15	•	10	6		17		18	•	1	9		20					

#	Description	Range
1.	Total number of messages	1 - 4
2.	Number of messages	1 - 4
3.	Number of satellites in line-of-sight	00 - 14
4.	1 st Sat. ID number	01 - 99
5.	1 st Sat. elevation angle (degree)	00 - 90
6.	1 st Sat. azimuth angle (degree)	000 - 359
7.	1 st Sat. SNR (Signal/Noise Ratio) (dB)	00 - 99
8-11.	2 nd Sat. Details	
12-15.	3 rd Sat. Details	
16-19.	4 th Sat. Details	
20.	Signal ID	

Example:

\$GPGSV,4,1,14,15,67,319,52,09,63,068,53,26,45,039,50,05,44,104,49,1*6E \$GPGSV,4,2,14,24,42,196,47,21,34,302,46,18,12,305,43,28,11,067,41,1*68 \$GPGSV,4,3,14,08,07,035,38,29,04,237,39,02,02,161,40,50,47,163,44,1*67 \$GPGSV,4,4,14,42,48,171,44,93,65,191,48,,,,,,,1*60 \$GLGSV,3,1,09,79,66,099,50,69,55,019,53,80,33,176,46,68,28,088,45,1*76 \$GLGSV,3,2,09,70,25,315,46,78,24,031,42,85,18,293,44,84,16,246,41,1*7A \$GLGSV,3,3,09,86,02,338,,,,,,,,,,,,,1*45 Not fixed

Message number

Total number of message

<checksum><CR><LF> is output right after the last satellite data output.

Notes: △4

- In this sentence, a maximum of four satellite details is indicated per each output. Five or more satellite details are output in the 2nd or 3rd messages. When there is an item which is not fixed in the satellite details, a null field is output. When there are only one to four satellite details, <checksum><CR><LF> is issued immediately after Sat. SV#, Sat. elevation angle, Sat. azimuth angle and SNR.
- Satellite number means the follow.

Satellite number from 01 to 32 indicates GPS (01 to 32)

Satellite number from 33 to 51 indicates SBAS (120 to 138)

Satellite number from 65 to 92 indicates GLONASS (slot 01 to slot 28)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Satellite number from 93 to 99 indicates QZSS (193 to 199)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

RMC - Recommended Minimum Navigation Information 46

Format:

Ullilat	•																			
\$XXRM	1C ,	C , hhmmss.sss , a , ddmm.mmmm		,	а	,	dddmm.	mmmm	,	а	,	x.x	,							
			1	2			. 3					4		5		6		7		
	x.x		, ddmmyy	,	х	(.X	,	а	,	а	,	,	а	*hh	<cr></cr>	<l< td=""><td>.F></td><td></td><td></td><td></td></l<>	.F>			
	8		9		1	10		11		12			13	}				_		

Description Range

1. UTC

"hh": hour 00 - 23
"mm": minute 00 - 59
"ss.sss": second 00.000 - 59.999

2. Status △6 A or V

"A": Data valid
"V": Data not valid

3-4. Latitude

"dd": degree 00 - 90

"mm.mmmm": minute 00.0000 - 59.9999
"a": North/South N or S

5-6. Longitude

"ddd": degree 000 - 180

"mm.mmmm": minute 00.0000 - 59.9999

"a": East/West E or W

7. Speed (kts)

8. True Course (degree)

9. Date

"dd": date
"mm": month

"yy": last two digits of the year

10. Magnetic declination

Note: A null field is output unless magnetic declination information is available.

11. Correction direction of magnetic declination

Note: A null field is output unless magnetic declination information is available.

12. Positioning System Mode Indication A, D or N

"A": Autonomous
"D": Differential
"N": Data Invalid

13. Navigation Status Indicator

S, C, U or V
"S": Safe
"C": Caution
"U": Unsafe
"V": Not Valid

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Example:

\$GNRMC,012344.000,A,3442.8266,N,13520.1233,E,0.00,0.00,191132,,,,D,V*0B UTC: 01:23:44.000 Differential 34 deg 42.8266 min N 135 deg 20.1233 min E

Speed: 0.0 kts True Course: 0.0 degrees UTC Date: Nov 19, 2032

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

VTG - Course Over Ground and Ground Speed Format:

\$XXVTG Τ Μ *hh <CR> <LF> X.X X.X X.X Ν X.X K a 5 3 6 7 1 2 4 8 9

Τ

Description Range

1-2. True Course (degree)

"T" (meaning TRUE)

3-4. Magnetic Direction

"M" (meaning Magnetic Direction) M

Note: A null field is output unless magnetic direction information is available.

5-6. Speed (kts)

"N" (meaning knot) N

7-8. Speed (km/h)

"K" (meaning km/h)

9. Positioning System Mode Indication A, D or N

"A": Autonomous
"D": Differential
"N": Data Invalid

Example:

\$GNVTG,0.00,T,,M,0.00,N,0.00,K,D*26

True Course: 0.00 degrees Speed: 0.00 kts, 0.00 km/h Mode: Differential

ZDA – Time & Date Format:

\$XXZDA	, hhmmss.sss	,	XX	,	XX	,	xxxx	,	xxx	,	XX	*hh	<cr></cr>	<lf></lf>
	1		2		3		4		5		6			

Description

1. UTC: Time

"hh": hour 00 - 23 "mm": minute 00 - 59

"ss.sss": second 00.000 - 59.999

UTC: Day of Month
 UTC: Month
 01 - 31
 01 - 12

UTC: Year 1999 - 2099 △3
 Local Zone Hours (+/-) 00 - 23

6. Local Zone Minutes 00 - 59

Example:

\$GPZDA,014811.000,13,09,2013,+00,00*7B UTC: 01:48:11.000 13th September, 2013

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

6 Proprietary NMEA Input Sentences

These sentences are input commands for the protocol of this receiver.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GNSS – Satellite System Configuration 4448

Format:

\$PERDAPI	, GNSS	, talkerID	, gps	, glonass	, galileo	, qzss	, sbas	*hh <cr> <</cr>	<lf></lf>
	1	2	3	4	5	6	7		

Num	Contents	Range	Default	Remark
1	GNSS	-	-	Command Name
2	talkerID	AUTO, LEGACYGP or GN △8	AUTO	AUTO: GLGSV is omitted in case of no glonass. GPGSV is omitted in case of no GPS, SBAS and QZSS. LEGACYGP: GL and GN sentence is omitted. GN: GLGSV is output even if no glonass. GPGSV is output even if no GPS, SBAS and QZSS.
3	gps	0 or 2	2	GPS mode △3
4	glonass	0 or 2	2	Glonass mode △3
5	galileo	0	0	Galileo mode (unimplemented)
6	qzss	0 or 2	2	Qzss mode △3
7	sbas	0, 1 or 2	1	Sbas mode △2

Example:

\$PERDAPI,GNSS,AUTO,2,2,0,2,2*41 Use: GPS, GLONASS, QZSS, SBAS

Mask: Galileo

Notes: △4

- This command controls which Global Navigation Satellite Systems are used by the receiver. The mode can be set to 0 or 2 for each satellite system. User can also set SBAS mode to 1. Mode 0 means to disable the system.

Mode 1 means to enable tracking only (do not use in position fix etc).

Mode 2 means to enable tracking and use the in position fix calculation.

- In GT-87, default setting of SBAS mode is 1, because to use calculation data of SBAS tends to reduce the accuracy of 1PPS. Therefore although GT-87 becomes to differential fix, SBAS is not appeared in GSA sentence in default setting.
- The response which is inserted current value to each field is obtained by receiving an effective command for setting or inputting a command which is omitted the fields after Command Name, that is, \$PERDAPI,GNSS,QUERY*18.
- "Sbas only configuration" and "No tracking configuration" are not accepted.

\$PERDAPI,GNSS,AUTO,0,0,0,0,2*43

\$PERDAPI,GNSS,AUTO,0,0,0,0,1*40

\$PERDAPI,GNSS,AUTO,0,0,0,0,0*41

- Cold restart (time also be cleared) is run when satellite system configuration is changed from/to glonass only fix configuration. In the others configuration, hot restart is run.

Users manual	Appendix A	
Revision #:	Α	
Date:	07-14-15	

FIXMASK – Setting of Positioning and Satellite Mask 4

Format:

_	iiiaci																		
	\$PERDAPI	,	FIXMASI	۷,	mc	de	, elevmas		sk	,	Reserve1		,	snrmask	,	Res	erve2	[,	
		1 2						3			4			5			6		
	Prohibit S\ (GPS)	/s	Prohibit SVs ' (GLONASS) '		, Pro	Prohibit SVs ' (Galileo) '			Prohibit SVs (QZSS)			Prohibit SVs ' (SBAS)]			^c hh	<cr></cr>	<	LF>	
	7	8						9	10					11					

Num	Contents	Range	Default	Remark
1	FIXMASK	-	-	Command Name
2	mode	USER	-	Fixed Value
3	elevmask	0 to 90	0	Elevation mask (in degree) Only SVs whose age is within this threshold are used in the position fix calculation.
4	Reserve1	0	0	Reserve field
5	snrmask	0 to 99	0	Signal level mask (in dB-Hz) Only SVs above this mask are fixed.
6	Reserve2	0	0	Reserve field
7	Prohibit SVs (GPS)	32BIT (HEX)	0	GPS Satellite number mask Each bit represents one SVID. The GPS satellites indicated by this field are not used in the position fix calculation. Lowest order bit means SV=01. Highest order bit means SV=32. △4
8	Prohibit SVs (GLONASS)	28BIT (HEX)	0	GLONASS Satellite number mask Each bit represents one SVID. The GLONASS satellites indicated by this field are not used in the position fix calculation. Lowest order bit
9	Prohibit SVs (Galileo)	20BIT (HEX)	0	means SV=65. Highest order bit means SV=92. △4 Galileo Satellite number mask Each bit represents one SVID. This field isunimplemented. △4
10	Prohibit SVs (QZSS)	7BIT (HEX)	0	QZSS Satellite number mask Each bit represents one SVID. The QZSS satellites indicated by this field are not used in the position fix calculation. Lowest order bit means SV=93. Highest order bit means SV=99. $\triangle 4$
11	Prohibit SVs (SBAS)	19BIT (HEX)	0	SBAS Satellite number mask Each bit represents one SVID. The SBAS satellites indicated by this field are not used in fix. Lowest order bit means SV=33. Highest order bit means SV=51. △4

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Example:

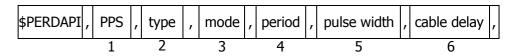
\$PERDAPI,FIXMASK,USER,10,0,37,0,0x92,0x01,0x00,0x00,0x20000*50

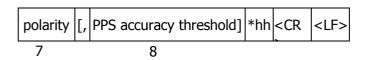
Elevation mask: 10 degrees Signal level mask: 37 dBHz

GPS mask: GPS (BIT2 = SVID 2), GPS (BIT5 = SVID 5) and GPS (BIT9 = SVID 9)

GLONASS mask: GLONASS (BIT1 = SVID 65)

SBAS mask: SBAS (BIT18 = SVID 50)


Notes:


- It is applied not only to First Fix or the time of a positioning return but to all the positioning.
- It is omissible after the 7th field.
- The response which is inserted current value to each field is obtained by receiving an effective command for setting or inputting a command which is omitted the fields after Command Name, that is, \$PERDAPI,MASK,QUERY*50.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

PPS – Setting of PPS (Pulse per second) 4 Format:

Num	Contents	Range	Default	Remark
1	PPS	-	-	Command Name
2	type	LEGACY GCLK	LEGACY	PPS type
3	mode	0 to 4	4	PPS mode 0: Always stop 1: Always output 2: Output only during positioning more than one satellite 3: Output only when TRAIM is OK 4: Output only when estimated accuracy is less than estimated accuracy threshold which is 8th field on this command.
4	period	0 to 1	0	PPS output interval 0: 1PPS (A pulse is output per second) 1: PP2S (A pulse is output per two seconds)
5	pulse width	1 to 500	200	PPS pulse width (ms)
6	cable delay	-100000 to 100000	0	PPS cable delay (ns) Plus brings delay PPS. Minus brings forward PPS.
7	polarity	0 to 1	0	PPS polarity (LEGACY PPS is rising edge only) 0: rising edge 1: falling edge
8	PPS accuracy threshold	5 to 9999	1000	PPS estimated accuracy threshold This threshold is used for mode 4. $\triangle 4$

Example:

\$PERDAPI,PPS,LEGACY,1,0,200,0,0,25*29
Type: LEGACY PPS Mode: Always output
1PPS Pulse width: 200 ms cable delay: 0 ns

Polarity: rising edge of PPS is synchronous with UTC time.

PPS estimated accuracy threshold is 25nsec.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Notes: △4

- LEGACY PPS setting is output legacy PPS which is not synchronized with frequency which is output from GCLK pin, but which is output immediately after first fix in case of cold start.
- GCLK PPS setting is output GCLK PPS which synchronized with frequency which is output from GCLK pin, but it takes some to become GCLK PPS steady after first fix (typically, 1~2 minutes after fist fix). User can confirmed whether GCLK PPS is steady by GCLK accurate field of TPS4 sentence.
- User can choose GPS, UTC (USNO) and UTC (SU) as alignment of PPS by TIMEALIGN command. The default is UTC (USNO). As for details, please refer to the page of TIMEALIGN command.
- The condition of PPS synchronization is the follow.

[1] GPS alignment

PPS	Before first fix	After first fix		
mode	Delote filst fix	Arter mist m		
0	OFF	OFF		
1	Sync with RTC	Sync with GPS		
2~4	OFF	Sync with GPS		

[2] UTC (USNO) alignment (default)

	, ,	` ,		
PPS	Before first fix	After first fix	After taking UTC (USNO)	
mode	Belove moe nx	7 (100) 111 00 1134	parameter from GPS	
0	OFF	OFF	OFF	
1	Sync with RTC	Sync with GPS	Sync with UTC (USNO)	
2~4	OFF	Sync with GPS	Sync with UTC (USNO)	

[3] UTC (SU) alignment

PPS mode	Before first fix	After first fix	After taking UTC (SU) parameter from GLONASS
0	OFF	OFF	OFF
1	Sync with RTC	Sync with GPS	Sync with UTC (SU)
2~4	OFF	Sync with GPS	Sync with UTC (SU)

- About PPS estimated accuracy, please refer to the page of CRX (TPS2) sentence.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

RESTART - Restart command 4 Format:

\$PERDAPI	,	RESTART	,	restart mode	*hh	<cr></cr>	<lf></lf>
		1		2			

Νu	ım	Contents	Range	Default	Remark
1	L	RESTART	-	-	Command Name
2	2	restart mode	HOT WARM COLD FACTORY	-	Restart mode

Example:

\$PERDAPI,RESTART,COLD*08

Mode: cold restart

Notes: △4

- As for the differences depending on the restart mode, please refer to the page of "Backup of the Receiver Parameters (for BBRAM)".
- The data which is stored by FLASHBACKUP command in Flash is not cleared even if FACTORY restart is occurred.
- Power off/on of GT-87 corresponds to hot restart when it is within 4 hours after last fix.
- Power off/on of GT-87 corresponds to warm restart when it is over 4 hours after last fix.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

TIME – Setting of time information 4

Initial time is configured. The setting of time is effective only within the case that time is not decided by other factors. A setting of a millennium which is the times of GPS week rollover is received also after time decision.

Format:

\$PERDAPI	, -	TIME	,	time of date	,	day	,	month	,	year	*hh	<cr></cr>	<lf></lf>	
		1		2		3		4		5				

Num	Contents	Range	Default	Remark
1	TIME	-	-	Command Name
2		00 to 23		UTC (Hour)
	Time of date	00 to 59	0	UTC(Minute)
		00 to 59		UTC(Second)
3	day	1 to 31	22	UTC (Date)
4	month	1 to 12	8	UTC (Month)
5	year	2013 to 2099	1999	UTC (Year) ∆3

Example:

\$PERDAPI,TIME,021322,24,11,2020*64 Time: 02:13:22 on 24th November, 2020

Notes: △4

- This command is needed to input correct date within +/- 1 year.
- Under normal conditions, User needs not to set initial time because time is decided by satellite navigation data.
- As for GPS week rollover timing and GT-87 week rollover timing, please refer to the follow.

event	date	GPS week
GPS week rollover timing (1st)	1000/00/22	1024
default time of date of GT-87	1999/08/22	1024
GPS week rollover timing (2nd)	2019/04/07	2048
rollover timing of GT-87	2032/08/15	2745
GPS week rollover timing (3rd)	2038/11/21	3072
operable time limit of GT-87	2099/12/31	6260

[In case that GT-87 does not have glonass]

GT-87 can keep outputting correct date after 2032/08/15 during power distribution.

GT-87 will output 2012/12/30 after 2032/08/15 unless user sets correct date by TIME command after user turns off GT-87 and also turns off backup current for BBRAM.

[In case that GT-87 has glonass]

GT-87 can adjust millennium automatically in the timing of first fix of glonass and outputs correct date until 2099/12/31 without user setting even if user turns off GT-87 and backup current.

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

TIMEZONE - Local Zone Time 4

This sentence is reflected to ZDA sentence (not only local zone field but also UTC time field).

Format:

\$PERDAPI	,	TIMEZONE	,	sign	,	hour	,	minute	*hh	<cr></cr>	<lf></lf>
		1		2		3		4			

Num	Contents	Range	Default	Remark
1	TIMEZONE	ı	-	Command Name
2	sign	0 to 1	0	GMT sign "0" shows positive, "1" shows negative.
3	hour	0 to 23	0	GMT (Hour)
4	minute	0 to 59	0	GMT (Minute)

Example:

\$PERDAPI,TIMEZONE,0,9,0*69

As GMT offset, display time is carried out +9:00.

Notes: △4

- In UTC (SU) alignment, GMT offset is changed to +3:00 automatically.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

SURVEY – Position Mode 41 Format:

\$PERDAPI	API , SURVEY ,		position mode [,		sigma threshold ,		,	time threshold]					
	1		2			3		4					
				[, latitude		,	, longitude		, altitude]]		*hh	<cr></cr>	<lf></lf>
				5			6		7				

Num	Contents	Range	Default	Remark
1	SURVEY	-	-	Command Name
2	position mode	0 to 3	2	0: Normal NAV (navigation) mode 1: Position Survey SS (self survey) mode 2: Position Survey CSS (continual self survey) mode 3: Position-hold TO (time only) mode
3	sigma threshold	0 to 255	0 ∆3	Sigma threshold (m) which changes automatically to position-fixed. (When the threshold value is 0, it is not used.)
4	time threshold	0 to 10080	480 (8hours) △3	Time threshold (minute) which changes automatically to position-fixed. (When the threshold value is 0, it is not used.)
5	latitude △1	-90 to 90	0	Latitude for hold position in TO mode. (degree) A positive number means the north latitude and a negative number means the south latitude. This field can be set only when position mode is 3.
6	longitude △1	-180 to 180	0	Longitude for hold position in TO mode. (degree) A positive number means the east longitude and a negative number means the west longitude. This field can be set only when position mode is 3.
7	altitude △1	-1000 to 18000	0	Altitude for hold position in TO mode. (m) This field can be set only when position mode is 3.

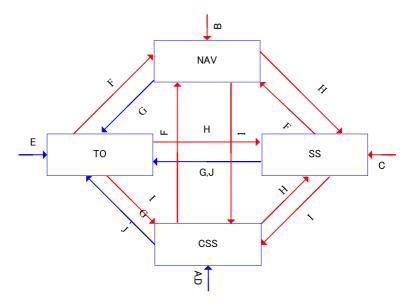
Example:

\$PERDAPI,SURVEY,1,10,1440*74

Mode: SS mode Sigma Threshold: 10 Time Threshold: 1440

\$PERDAPI,SURVEY,3,0,0,37.78700,-122.45100,31.5*53 Mode: TO mode Sigma Threshold: 0 Time Threshold: 0

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		


Fixed position: 37.78700 degrees north 122.45100 degrees west Altitude: 31.5 m

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

Notes:

- It is omissible after the 3rd field.
- When the position mode is "1", a position is re-calculated after power supply OFF/ON. Please use it, when the antenna position may change before power supply OFF.
- When the position mode is "2", after power supply OFF/ON, the estimated position that calculated before power supply OFF is kept, and the position is updated. By using it when the antenna position does not change after the power supply OFF, the time for changing to Position-hold mode can be shortened.
- In order to change automatically to Position-hold mode, it is necessary to set to Survey mode.
- If both sigma threshold and time threshold are configured, the position mode changes to Position-hold mode when either is fulfilled. When the threshold value is 0, it is not used.
- The displayed position may differ a little from the configured position due to conversion error.
- Hot start is occurred when survey mode is shift to NAV mode. ${\scriptscriptstyle \triangle} 1$

Flow chart about position mode

	Transition condition	Whether keep or not survey position and number of times of survey process
Α	After first power on, or after factory restart (default)	Discard
В	After power on in case that last mode is "SURVEY,0".	Discard
С	After power on in case that last mode is "SURVEY,1".	Discard
D	After power on in case that last mode is "SURVEY,2".	Keep
E	After power on in case that last mode is "SURVEY,3".	Keep
F	"SURVEY,0" command	Discard
G	"SURVEY,3" after self survey position is fixed. "SURVEY,3" with user's hold position.	Кеер
Н	"SURVEY,1" command	Discard
I	"SURVEY,2" command	Discard

Users manual	Appendix A		
Revision #:	A		
Date:	07-14-15		

	The condition of survey is satisfied.	
J	[*] Position mode is always started by time only mode if TO	Keep
	mode by this condition and power off.	•

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

FREQ — Setting of GCLK FREQUENCY 4247 Format:

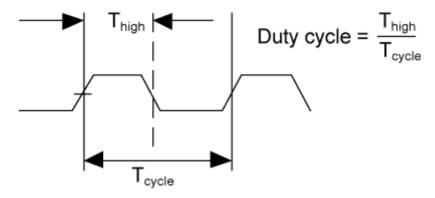
\$PERDAPI	,	FR	,	mode	,	freq	[,	duty	,	offset]	*hh	<cr></cr>	<lf></lf>
		1		2		3		4		5			

Num	Contents	Range	Default	Remark
1	FREQ	-	-	Command Name
2	mode	0 to 1	0	0 : stop 1 : output
3	freq	4000 to 40000000	10000000 (10MHz)	frequency[Hz]
4	duty △2	10 to 90 △7	50	duty cycle [%]
5	offset ∆2	0 to 99	0	phase delay in cycle [%] from GCLK-PPS edge

Example:

\$PERDAPI,FREQ,1,10000000*47

Mode: output Frequency: 10MHz


Notes:

- It is omissible after the 4th field.

- The response which is inserted current value to each field is obtained by receiving an effective command for setting or inputting a command which is omitted the fields after Command Name, that is, \$PERDAPI,FREQ,QUERY*11.

- Duty cycle is derived from Thigh / Tcycle in the follow figure. $\triangle 2$

- User can stock current FREQ command setting on Flash by FLASHBACKUP command.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

DEFLS – Setting of default leap second 44 46 Format:

\$PERDAPI	,	DEFLS	,	sec	[,	mode]	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark	
1	DEFLS	-	-	Command Name	
2	sec	0 to 32	16	Default leap second	
3	mode	ode AUTO or FIXED AUTO		AUTO: default leap second is updated automatically after taking leap second from satellites. FIXED: default leap second is kept as user setting.	

Example:

\$PERDAPI, DEFLS, 16, AUTO*27

Default leap second: 16 second (this value is updated automatically).

- It is omissible after the 3rd field.
- This value is used before leap second is confirmed by other factors which are to take UTC (USNO) parameter which is broadcasted from GPS or to take time difference between GPS and GLONASS.
- GT-87 can store current DEFLS command setting in Flash by FLASHBACKUP command.
- Cold restart (time also be cleared) is run when this command is run. $\vartriangle 6$

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

TIMEALIGN – setting of time alignment △4 Format:

\$PERDAPI , TIMEALIGN , mode *hh <CR> <LF>

Num	Contents	Range	Default	Remark	
1	TIMEALIGN -		-	Command Name	
2	mode	1 to 3	2	1 : GPS alignment 2 : UTC(USNO) alignment 3 : UTC(SU) alignment	

Example:

\$PERDAPI,TIMEALIGN,2*31 UTC (USNO) alignment

Notes:

- Please note that mode 0 is invalid value.
- User can store current TIMEALIGN command setting on Flash by FLASHBACKUP command.
- This command is used to set output time alignment and 1PPS alignment.

[1: GPS alignment]

- Leap second is not applied to output time even if GT-87 already has leap second.
- PPS is output in synchronization with GPS even if GT-87 already has UTC parameter.
- In Glonass only mode, correct default leap second is needed to output correct time.

[2: UTC (USNO) alignment]

- · Leap second is applied to output time.
- PPS is output in synchronization with GPS before taking UTC (USNO) parameter from GPS.
- PPS is output in synchronization with UTC(USNO) after taking UTC (USNO) parameter from GPS.
- In Glonass only fix, because GT-87 can't take UTC (USNO) parameter from GLONASS, PPS is kept to output in synchronization with GPS.

[3: UTC (SU) alignment]

- Leap second is applied to output time. And, GMT offset is set as +3:00.
- PPS is output in synchronization with GPS before taking UTC (SU) parameter from GLONASS.
- PPS is output in synchronization with UTC(SU) after taking UTC (SU) parameter from GLONASS.
- In GPS only fix, because GT-87 can't take UTC (SU) parameter from GPS, PPS is kept to output in synchronization with GPS.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

Restriction:

Output time

	GPS only fix setting	GLONASS only fix setting	GPS + GLONASS setting
GPS alignment	ОК	accurate default leap second is required [*1]	ОК
UTC(USNO) alignment	OK	OK	OK
UTC(SU) alignment	OK	OK	OK

PPS

	GPS only fix setting	GLONASS only fix setting	GPS + GLONASS setting	
GPS alignment	OK	OK	OK	
UTC(USNO) alignment	OK	NG	OK	
UTC(SU) alignment	NG	OK	OK	

^[*1] In GPS alignment and GLONASS only fix setting, to output correct output time, user needs to set accurate default leap second by DEFLS command.

- In this graph, QZSS is treated as GPS.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

FLASHBACKUP - Setting of backup in Flash 4 Format:

\$PERDAPI	,	FLASHBACKUP	,	type	*hh	<cr></cr>	<lf></lf>
		1		2			

Num	Contents	Range	Default	Remark
1	FLASHBACKUP	-	1	Command Name
2	type	0x00 to 0x07 (HEX)	0x00	Target of backup Each bit represents one command setting 0x01 : FREQ command setting 0x02 : DEFLS command setting 0x04 : TIMEALIGN command setting 0x00 means that flash backup is initialised.

Example:

\$PERDAPI,FLASHBACKUP,0x03*4E

Current setting of FREQ and DEFLS command is stored in flash.

Notes:

- This data stored in Flash is erased when software update.
- This data stored in Flash is not erased by factory cold restart.
- Hot start is occurred when this command is input.
- Please don't turn off GT-87 during this command is sent.

Restriction:

GT-87 has two ways to backup data.

[1] BBRAM

BBRAM is RAM which is available to store data as long as backup current is impressed. GT-87 can store ephemeris data, almanac data and configuration which user sets by commands etc in BBRAM, and the data is not erased even if GT-87 is turned off.

The backup timing of BBRAM is every second. The data is cleared when user inputs RESTART command and/or user turns off backup current.

[2] FLASH

GT-87 can store FREQ command setting, DEFLS command setting and/or TIMEALIGN command setting in flash when user inputs FLASHBACKUP command. The data is not erased even if GT-87 is turned off or RESTART command. The data is cleared when user inputs FLASHBACKUP command or software update.

If GT-87 has different backup data between BBRAM and Flash, BBRAM data have a priority over flash. In this case, when the data of BBRAM is invalid because that backup current is turned off, Flash data is applied.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CROUT - Setting of CR Output Format:

\$PERDAPI	,	CROUT	,	type	,	rate	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	CROUT	-	-	Command Name
2	type	N,M,W,X,Y,Z	W,X,Y,Z	Output CR sentence [*] Alphabets of outside range are reserved.
3	rate	W,X,Y,Z: 0 to 255 N,M: 0 to 1	1	W,X,Y,Z: 1-255:Update interval of the sentence (sec) 0: The sentence(s) is/are stopped. N,M: 1: Sentence(s) is/are output every event occurred. 0: The sentence(s) is/are stopped.

Example:

\$PERDAPI,CROUT,W,1*4E

CRW (TPS1) sentence is output every second.

\$PERDAPI,CROUT,XZ,3*19

CRX (TPS2) sentence and CRZ(TPS4) sentenced are output every 3 seconds.

\$PERDAPI,CROUT,W,0*4F

CRW (TPS1) sentence is stopped.

\$PERDAPI,CROUT,N,1*57

CRN sentence is output every event occurred.

Notes:

- "M" or/and "N" can be output only in case that baud rate is 115200bps. △1

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

7 CFG – Setting of Application Software

NMEAOUT - Standard NMEA Output 49

Format:

\$PERDCFG	,	NMEAOUT	,	type	,	interval	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	NMEAOUT	-	-	Command Name
				Standard NMEA sentence
2	type	[*1]	-	[*1] GGA, GLL, GNS, GSA, GSV, RMC, VTG, ZDA, ALL△9. (ALL means all sentences from GGA to ZDA.)
3	Interval	0 to 255	-	Update interval of the sentence (sec) When the value is "0", the sentence is output only once. After that, the sentence is stopped.

Example:

\$PERDCFG,NMEAOUT,GGA,2*57

Interval: 2 seconds

\$PERDCFG,NMEAOUT,GSV,0*56

GSV sentence is output only once. After that, GSV sentence is stopped.

UART1 – Serial Communication Port Format:

\$PERDCFG	,	UART1	,	baud	*hh	<cr></cr>	<lf></lf>
-----------	---	-------	---	------	-----	-----------	-----------

. 2

Num	Contents	Range	Default	Remark
1	UART1	-	-	Command Name
2	baud	4800, 9600, 19200, 38400, 57600 or 115200	38400	Baud rate (bps)

Example:

\$PERDCFG,UART1,115200*65

Baud rate: 115200 bps

Notes:

- When the setting of the serial communication port is changed by this command, ACK sentence is output by the baud rate which was being used.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

- In case of using low baud rate, please adjust size of output sentence by NMEAOUT command and CROUT command to output all sentence within one second.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

SYS - PVT System

1.2 VERSION – Software Version

Format:

\$PERDSYS	,	VERSION	*hh	<cr></cr>	<lf></lf>

1

	Num	Contents	Range	Default	Remark
Ī	1	VERSION	-	-	Command Name

Example:

\$PERDSYS,VERSION*2C

GPIO – General Purpose Input/output Format:

1

Num	Contents	Range	Default	Remark
1	GPIO	-	-	Command Name

Example:

\$PERDSYS,GPIO*67

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

8 Proprietary NMEA Output Sentences

This sentence is a protocol only for our company. It starts from "\$PERD" which shows that it is an original sentence.

ACK – Output the Command Reception Check Format:

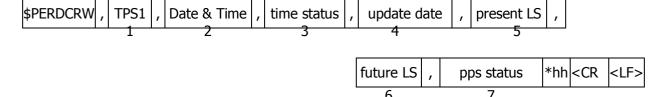
\$PERDACK	,	command	,	sequence	,	subcommand	*hh	<cr></cr>	<lf></lf>
		1		2					

Num	Contents	Range	Default	Remark
1	command	-	-	First field of received command
2	sequence	-1 to 255	0	The number of times successful for the reception. It is added 1 whenever it succeeds in command reception, and 0 to 255 is repeated. When command reception is failed, -1 is returned.
3	subcommand	-	_	Second token of input command

Example:

\$PERDACK,PERDAPI,-1,PPS*72 PERDAPI,PPS command input is failed.

Notes:


- As for the command, check sum must be effective before ACK is sent.

Users manual	Appendix A	
Revision #:	Α	
Date:	07-14-15	

9 CR — eRide GNSS Core Library Interface

CRW(TPS1) – Output Time Transfer Info per Second (Date and leap second) 4445 Format:

Num	Contents	Range	Default	Remark		
1	TPS1	-	-	Command Name		
2	Date & Time	14-byte fixed length	19990822000000	Present date and time year, month, day, hour, minute, second		
				Present time status of output sentence 0: RTC		
3	time status	0 to 2 (1byte)	0	1: GPS (GT-87 doesn't apply leap second or has only default leap second)		
				2: UTC (GT-87 has confirmed leap second and applies it.)		
				Leap second update schedule		
4	update date	14-byte fixed length	000000000000000	year, month, day, hour, minute, second		
4				This date indicates zero when no leap second update schedule.		
5	present LS	-31 to +32	+16	Present leap second received from		
5	present L3	(3byte)	∆5	satellites		
6	future LS	-31 to +32 (3byte)	+00	Future leap second received from satellites		
				Present pps is synced with the follow.		
		pps status 0 to 3 (1byte)		0:RTC		
7	• •		0	1:GPS		
	∆4			2:UTC(USNO)		
				3:UTC(SU)		

Example

\$PERDCRW,TPS1,20120303062722,2,20120701000000,+15,+16,2*09

Present date: 2012/03/03 06:27:22

Time status: present time of output sentence is sync with UTC.

Leap second update schedule: 2012/7/1 00:00:00

Current leap second: +15 Future leap second: +16

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Pps status: present pps is sync with UTC (USNO)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Notes:

- This command is output every second.
- Present LS is current leap second. This is updated in the timing of leap second update schedule.
- \$PERDAPI,CROUT,W,0*4F stops outputting this command.
- Update data indicate zero when no update schedule.

Restriction:

About time status

alignment	Before first fix	After first fix	After taking confirmed leap second
GPS	RTC	GPS	GPS
UTC(USNO)	UTC(USNO) RTC		UTC
UTC(SU)	RTC	GPS	UTC

About leap second which is used to adjust output time

alignment	Before first fix	After first fix	After taking confirmed leap second
GPS	0	0	0
UTC(USNO)	Default leap second	Default leap second	confirmed leap second
UTC(SU)	Default leap second	Default leap second	confirmed leap second

GT-87 takes confirmed leap second when GT-87 takes UTC (USNO) parameter which is broadcasted from GPS or takes time both GPS and GLONASS.

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

CRX(TPS2) – Output Time Transfer Info per Second (PPS) 4 Format:

\$PERDCRX	, TPS2	, pps	status	,	pps mode	,	pps period	ı,	, pulse width	,	cable	delay	
	1		2		3		4		5			6	_
, polarity	, pps	type ,	estima	ted	accuracy	,	Sawtooth	,	pps acc thresho	old	*hh	<cr></cr>	<lf:< td=""></lf:<>
7		8	•	ç)		10		11				

Num	Contents	Range	Default	Remark		
1	TPS2	-	-	Command Name		
		_		Output status of 1PPS		
2	pps status	0 to 1	0	0: 1PPS OFF		
		(1byte)		1: 1PPS ON		
				PPS mode		
				0: Always stop		
				1: Always output		
3	pps mode	0 to 4 (1byte)	4	2: Output only during positioning more than one satellite		
				3: Output only when TRAIM is OK		
				4: Output only when estimated accuracy is less than estimated accuracy threshold		
4	period	0 to 1 (1byte)	0	1PPS output interval 0: 1PPS (A pulse is output per second) 1: PP2S (A pulse is output per two seconds)		
5	pulse width	001 to 500 (3byte)	200	1PPS pulse width (ms)		
6	cable delay	-100000 to +100000 (7byte)	+000000	1PPS cable delay (ns)		
7	polarity	0 to 1 (1byte)	0	0 : rising edge 1 : falling edge		
8	pps type	0 to 1 (1byte)	0	0 : LEGACY PPS 1 : GCLK PPS		
9	estimated accuracy	0000 to 9999 (4byte)	0	1PPS estimated accuracy. (ns)		
10	Sawtooth	-1.760 to +1.760 (6byte)	+0.000	Sawtooth correction (ns)		
11	pps acc threshold	0000 0005 to 9999 (4byte)	1000	PPS estimated accuracy threshold (ns) This threshold is used for pps mode 4. 0 means that this threshold is not used.		

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

\$PERDCRX,TPS2,1,2,0,200,+001000,0,0,0005,+0.000,1000*29

PPS status: PPS ON (1)
PPS mode: during on fix (2)
PPS period: 1PPS (0)
PPS pulse width: 200ms
PPS cable delay: +1000ns
Polarity: rising edge
Type: LEGACY PPS
Estimated accuracy: 5ns

Sawtooth: +0.000ns

PPS estimated accuracy threshold: 1us

- This command is output every second.
- \$PERDAPI,CROUT,X,0*40 stops outputting this command.
- Output Values of period, pulse width, polarity are switched by pps type (LEGACY or GCLK).
- PPS estimated accuracy means estimated difference between PPS of GT-87 and GPS, UTC (USNO) or UTC (SU) timing which user sets by TIMEALIGN command. This is not guarantee value, but user can use this value to get a rough idea.
- Sawtooth means correction value under the resolution of GT-87, that is, about 3.5 ns.
- Sawtooth value is applied to prior to the one second PPS. Corrected PPS [t-1] = output PPS [t-1] + Sawtooth value [t]

Users manual	Appendix A				
Revision #:	Α				
Date:	07-14-15				

CRY(TPS3) - Output Time Transfer Info per Second (Survey & TRAIM) Format:

\$P	ERDCRY	,	TPS3	,	pos mode	,	sigr	na	, sign	a thre	esho	old ,	,	time	,	time t	thresho	ld ,
			1		2		3			4				5			6	
	TRAIM s	sol	ution	,	TRAIM sta	tu	s ,	Re	moved	SVs	,	Rec	eive	er statu	IS	*hh	<cr></cr>	<lf></lf>
	7	, _			8				9				1	10				

Num	Contents	Range	Default	Remark
1	TPS3	-	-	Command Name
				Positioning mode
				0: Normal
2	pos mode	0 to 3 (1byte)	2	1: Survey mode (re-calculation for every power supply OFF/ON)
		(Ibyte)		2: Survey mode(calculation continuously before and after power supply OFF/ON)
				3: Position-hold mode
3	sigma	0000 to 1000 (4byte)	1000	Current variance value of survey position (m)
4	sigma	000 to 255	000	Sigma threshold (m) which changes
	threshold	(3byte)	∆3	automatically to position-fixed.
5	time	0 to 999999 (6byte)	000000	Current update times of survey position (sec). It is not updated at the time of positioning interruption.
_	time	0 to 604800	028800	Time threshold (sec) which changes
6	threshold	(6byte)	∆3	automatically to position-fixed.
				TRAIM solution
				0: OK
	TRAIM		2	1: ALARM
7	solution		2	2: UNKNOWN, due to
				a. alarm threshold set too low
				b. insufficient satellites being tracked
				TRAIM status
	TRAIM	0 to 2	2	0: detection and isolation possible
8	status	(1byte)	2	1: detection only possible
				2: neither possible
9	removed SV	0 to 3 (2byte)	00	number of the removed satellite by TRAIM
	Receiver			
10	status	10byte	0x00000000	Reserve field
	∆3			

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

\$PERDCRY,TPS3,2,0003,001,002205,086400,0,0,00,0x000000000*68

Positioning mode: Survey mode (calculation continuously) (2)

Survey sigma: 3 [m]

Survey sigma threshold: 1 [m] Survey time: 2205 [seconds]

Survey time threshold: 86400 [seconds]

TRAIM solution: OK (0)
TRAIM status: OK (0)
Removed SVs: 0

Receiver status: 0x00000000

Notes:

- This command is output every second.

- \$PERDAPI,CROUT,Y,0*41 stops outputting this command.

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

CRZ (TPS4) - Output Time Transfer Info per Second (FREQUENCY) △3 Format:

\$PERDCRZ ,	TPS4,	freq mode ,	Freq status	,	GCLK accuracy	,	е	,	de	,
	1	2	3		4		5		6	

lock cnt ,	lockoff cnt	, reserve ,	IDtag	GCLK setting 1	, GCLK setting 2	*hh <cr></cr>	<lf></lf>
7	8	9	10	11	12		

Num	Contents	Range	Default	Remark
1	TPS4	-	-	Command Name
2	freq mode	1 to 6 (1byte)	1	1: warm up 2: lock 3: hold over 4: free run 5: coarse mode 6: fine mode
3	Freq status	0 or 1 (1byte)	0	0: Not output 1: Output
4	GCLK accuracy	0 or 1 (1byte)	0	Not accurate GCLK PPS and GCLK frequency are accurate
5	е	-999999 to +999999 (7byte)	-	Phase delay between LEGACY and GCLK PPS (no dimensional)
6	de	-999999 to +999999 (7byte)	-	Amount of change of phase delay (no dimensional)
7	lock cnt	0 to 999999 (7byte)	-	Duration time of Lock (sec)
8	lockoff cnt	0 to 999999 (7byte)	-	Duration time of holdover/free run (sec)
9	reserve	0x00 to 0xFF (6byte)	-	Reserve field
10	IDtag	(6byte)	-	Product name and last two digits of product version In case of GT-8777 of "4850466003" → 8777 + 03 = 877703 In case of GT-87 of "4850466005" → 8700 + 05 = 870005
11	GCLK setting 1	(4byte)	-	Reserve field
12	GCLK setting 2	(4byte)	-	Reserve field

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Freq mode: warm up Freq status: output GCLK accuracy: accurate

- This command is output every second.
- \$PERDAPI,CROUT,Z,0*42 stops outputting this command.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CRM - Measurement Data of GPS

Format:

. <u>VI</u>	mat.																	
\$	PERDCRM	,	time	,	ser	nun	۱ , l	max	sen	,	syste	em ,	,	svid		,	reserve	2
\ <u>-</u>			1			2		3	3		4		5				6	
				SI	nr	,	adr	,	dopp	doppfreq		pseudo		range	*h	h	<cr></cr>	<lf></lf>
				-	7		8	Ç		9		10)				

Num	Contents	Range	Default	Remark
1	time	0 to 604799	-	GPS time of week
2	sennum	sennum 1 to 32		Sentence number
3	maxsen 1 to 32		-	Maximum number of sentences
4	system 1		-	GNSS system ID (1=GPS)
5	svid 1 to 99		-	Satellite number
6	reserve	1 to 3	-	Reserve field
7	snr	0 to 55	-	Signal to Noise Ration [dB-Hz]
8	adr	32bit	-	Accumulated Doppler Range [Cycles, LSB=-6]
9	doppfreq 32bit		-	Doppler Frequency [meters/sec, LSB=-12]
10	pseudorange	32bit	-	Pseudrange [meters, LSB=-6]

Example:

\$PERDCRM,467055,9,10,1,18,2,40,251470,-225117,1630912949*4C

- This sentence will be output as a set once per second and will contain measurements for all GPS systems.
- To output this sentence, please input "\$PERDAPI,CROUT,M,1*54" when baud rate is 115200bps.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CRN - Navigation Data

Format:

\$PERDCRN	,	system	,	svid	,	subframe data	*hh	<cr></cr>	<lf></lf>	
		1		2		3				

Num	Contents	Range	Default	Remark				
1	system	1	-	GNSS system ID (1=GPS)				
2	svid	1 to 99	-	Satellite number				
3	subframe data	10 words (60 strings)	-	Subframe data no parirt included				

Example:

\$PERDCRN,1,7,8B0B349809AC00424A2471C5FF9F27BB10C82EB5884CC987FFA50C0BF2A8*0C

- For each GPS satellite decoding data, this string is output once every 6 seconds.
- For GPS, the subframe field is a hexadecimal representation of all 10 words of a subframe.
- If a word was not decoded or contained a parity error, the six characters associated with that word will be reported as "-----".
- To output this sentence, please input "\$PERDAPI,CROUT,N,1*57" when baud rate is 115200bps.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

SYS – Answer of PVT System

7.3.1 ERSION- Software Version

Format:

\$PERDSYS	,	VERSION	,	device	,	version	,	reserve1	,	reserve2	*hh	<cr></cr>	<lf></lf>
		1		2		3		4		5			

Num	Contents	Range	Default	Remark
1	VERSION	-	-	Command Name
2	device	-	-	Device Name
3	version	-	-	Version number
4	reserve1	-	-	Reserve field
5	reserve2	-	-	Reserve field

Example:

\$PERDSYS,VERSION,OPUS7_SFLASH_ES2_64P,ENP622A1226410F,QUERY,N/A*1A

Notes:

- Character string of the device and version is free format.

GPIO- General Purpose Input/output Format:

\$PERDSYS	,	GPIO	,	state	*hh	<cr></cr>	<lf></lf>
		1		2			

Num	Contents	Range	Default	Remark
1	GPIO	-	-	Command Name
2	state	H or L	-	GPIO state (H:High , L:Low)

Example:

\$PERDSYS,GPIO,HHHHLLLL*4B

Notes:

- This first character represents GPIO 0 and the last character represents GPIO 8.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

FIXSESSION- Fix Session 41 Format:

Ţ. 2.33.6 , 2.33.63 , 1.33.133 , 1.33.133	\$PERDSYS	,	FIXSESSION	,	reserve1	[,	reserve2	,	reserve3]	*hh	<cr></cr>	<lf></lf>
---	-----------	---	------------	---	----------	----	----------	---	-----------	-----	-----------	-----------

1

2 3

4

Num	Contents	Range	Default	Remark
1	FIXSESSION	ı	-	Command Name
2	reserve1	-	-	reserve field
3	reserve2	-	-	reserve field
4	reserve3	-	-	reserve field

Example:

\$PERDSYS,FIXSESSION,ON,19015,19.015*7C

Notes:

- This string is sent when certain events occur. This is for *eRide* use only.

ANTSEL- Antenna selecting △1 Format:

\$PERDSYS	,	ANTSEL	,	reserve1	,	reserve2	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	ANTSEL	-	-	Command Name
2	reserve1	-	-	reserve field
3	reserve2	-	-	reserve field

Example:

\$PERDSYS,ANTSEL,FORCE1L,1LOW*32

Notes:

- This string is sent when certain events occur. This is for *eRide* use only.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

BBRAM - Battery Backup Random Access Memory 41 Format:

\$PERDSYS	,	BBRAM	,	reserve1	[,	reserve2]	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	BBRAM	ı	-	Command Name
2	reserve1	-	-	reserve field
3	reserve2	-	-	reserve field

Example:

\$PERDSYS,BBRAM,PASS*15

Notes:

- This string is sent when certain events occur. This is for *eRide* use only.

MSG – Event Driven Message △1 Format:

\$PERDMSG	,	key	[,	string]	*hh	<cr></cr>	<lf></lf>
		1		2	•		•

Num	Contents	Range	Default	Remark
1	key	-	-	Alphanumeric event indicator
2	string	-	-	Description of event

Example:

\$PERDMSG,1A*06

Notes:

- This string is sent when certain events occur. Some strings are for *eRide* use only and contain only an alphanumeric key. Others provide user feedback and contain description of the event.

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

10 Backup of the Receiver Parameters (for BBRAM) 4

The parameters which this receiver has backed up are shown below.

Chart. Backup of the receiver parameter

CONTENTS	PARAMETER	HOT	WARM	COLD	FACTORY	POWER OFF/ON
Present time	Date & Time	YES	YES	YES	NO	YES
Present time	Millennium	YES	YES	YES	NO	YES
	Latitude	YES	YES	YES	NO	YES
Receiver's present position	Longitude	YES	YES	YES	NO	YES
position	Altitude	YES	YES	YES	NO	YES
5	Latitude	YES	YES	YES	NO	YES[*3]
Receiver's hold position[*1]	Longitude	YES	YES	YES	NO	YES[*3]
position[1]	Altitude	YES	YES	YES	NO	YES[*3]
Ephemeris	Ephemeris data	YES	NO	NO	NO	YES[*2]
Almanac	Almanac data	YES	YES	NO	NO	YES

Chart. Backup of the receiver parameter of command

COMMAND NAME	PARAMETER	НОТ	WARM	COLD	FACTORY	POWER OFF/ON
GNSS	GNSS setting	YES	YES	YES	NO	YES
FIXMASK	FIXMASK setting	YES	YES	YES	NO	YES
PPS	PPS setting	YES	YES	YES	NO	YES
TIMEZONE	GMT setting	YES	YES	YES	NO	YES
	position mode	YES	YES	YES	NO	YES
	Sigma threshold for survey	YES	YES	YES	NO	YES
SURVEY	Time threshold for survey	YES	YES	YES	NO	YES
	Current sigma for survey	YES[*3]	YES[*3]	YES[*3]	NO	YES[*3]
	Current time for survey	YES[*3]	YES[*3]	YES[*3]	NO	YES[*3]
FREQ	FREQ setting	YES	YES	YES	NO	YES
CROUT	CROUT setting	YES	YES	YES	NO	YES
DEFLS	Default leap sec	YES	YES	YES	NO	YES

Page #:	55 of 58	www.novuspower.com	
---------	----------	--------------------	--

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

TIMEALIGN	Time alignment	YES	YES	YES	NO	YES
FLASHBACKUP	Backup in flash	YES	YES	YES	YES	YES

Chart. Backup of the configure parameter of command

orial at 2 doctor or are configure parameter or communic							
COMMAND NAME	PARAMETER	HOT	WARM	COLD	FACTORY	POWER OFF/ON	
UART1	Baud rate of UART1	YES	YES	YES	YES	NO	
NMEAOUT	NMEA output interval	YES	YES	YES	YES	NO	

[*1] The position calculated by position survey mode or input by \$PERDAPI,SURVEY,3. [*2] There is a time limitation (4 hours). [*3] CSS (continues survey) mode or TO (time only) mode only

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

LIMITED HARDWARE WARRANTY

Novus Power Products (hereinafter Novus) warrants its products to the original end user ("original purchaser") and warranty is not transferrable. Novus guarantees that the NOVUS hardware products that you have purchased from NOVUS are free from defects in materials or workmanship under normal use during the LIMITED WARRANTY PERIOD. The LIMITED WARRANTY PERIOD starts on the date of shipment and for the period of 1 (one) year to be free from defects caused by faulty materials or poor workmanship, provided:

- (a) NOVUS is notified in writing by Buyer of such defect prior to the expiration of the warranty period, and
- (b) after receiving return authorization –RMA- from NOVUS, the defective item is returned with transportation prepaid to NOVUS, Independence, Missouri, with transportation charges prepaid by Buyer ... see RMA policy in Terms and conditions, and
- (c) NOVUSs' examination of such unit shall disclose to its satisfaction that such defect(s) exist and have not been caused by misuse, neglect, improper installation, improper storage, unauthorized modifications, inadequate maintenance, operation outside the environmental specifications for the product, repair alteration, or accident. NOVUS assumes no risk or liability for results of the use of products purchased from it, including but without limiting the generality of the foregoing: (1) the use in combination with any electrical or electronic components, circuits, systems, assemblies or any other materials or substances; (2) unsuitability of any product for use in any circuit or assembly. Removal or tampering with tamper-proof label on merchandise will void warranty coverage unless with the written authorization from NOVUS (d) an evaluation fee will be charged to Buyer to cover inspection and testing costs for any item returned by Buyer under this paragraph which is found to be within specifications and/or otherwise not the responsibility of NOVUS under the terms and conditions of this paragraph or any other part of this Agreement..

Your dated sales or delivery receipt is your proof of the purchase date. You may be required to provide proof of purchase as a condition of receiving warranty service. You are entitled to hardware warranty service according to the terms and conditions of this document if a repair to your NOVUS product is required during the limited warranty period. Our obligation at NOVUS is limited to repair or replace products which prove to be defective.

Should Novus be unable to repair or replace the product within a reasonable amount of time, the customer's alternate remedy shall be a refund of the purchase price upon return of the product to Novus. The liability of NOVUS under this warranty is limited to replacing, repairing or issuing a credit, at its option, for any such item returned by Buyer under the terms of this warranty.

EXCLUSIONS: The above warranty shall not apply to defects resulting from improper or inadequate maintenance by the customer, customer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product or improper site preparation and maintenance (if applicable). For probes, cables, antennas and accessories, the warranty period is 90 (ninety) days.

PRODUCT SPECIFICATIONS: Published specifications whether contained herein or in any other materials or documents distributed to Buyer by Novus do not become final or binding on NOVUS until approved by NOVUS. NOVUS expressly reserves the right to change or modify specifications at any time without prior notice.

WARRANTY LIMITATIONS: NOVUS MAKES NO OTHER WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS PRODUCT. NOVUS SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN ALL CIRCUMSTANCES NOVUS' MAXIMUM LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE PRODUCTS SOLD. NOVUS SHALL NOT, UNDER ANY CIRCUMSTANCES BE LIABLE UPON A CLAIM OR ACTION IN CONTRACT, TORT, INDEMNITY OR CONTRIBUTION OR OTHER CLAIMS RELATING TO THE PRODUCTS IT SELLS WHICH EXCEEDS THIS LIABILITY LIMIT. NOVUS SHALL NOT BE LIABLE FOR THIRD PARTY CLAIMS FOR DAMAGES AGAINST THE CUSTOMER, OR FOR MALFUNCTION, DELAYS, INTERRUPTION OF SERVICE, LOSS OF BUSINESS, LOSS OR DAMAGE TO EXEMPLARY DAMAGES, WHETHER OR NOT NOVUS HAS BEEN MADE AWARE OF THE POSSIBILITY OF SUCH CLAIMS OR DAMAGES.

LIMITATION OF REMEDIES: REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL NOVUS BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA OR BUSINESS INFORMATION (OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

OF OR INABILITY TO USE THE HARDWARE SUPPLIED THEREWITH EVEN IF NOVUS OR ANYONE ELSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

EXCLUSIVE REMEDIES: THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMERS' SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL NOVUS BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Page #: 5	58 of 58	www.novuspower.com	
-----------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

User Manual \$GPNVS

Appendix C: \$GPNVS Status String Definitions

All information provide herein is the proprietary property of Novus Power Products L.L.C. The information included may be reproduced without the permission of Novus Power Products L.L.C. with out prior approval for purpose of operating the equipment.

Page #:	1 of 24	www.novuspower.com		
---------	---------	--------------------	--	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

Contents

1.0 The \$GPNVS Serial Status String	3
1.1 Status String (\$GPNVS,1) Fault Bytes	
1.2 Status String (\$GPNVS,2) Channel Values 1-8	
1.3 Status String (\$GPNVS,3) Power Supply Values	6
1.4 Status String (\$GPNVS,4) Channel Values 9-16	7
1.5 Status String (\$GPNVS,5) Sensors	8
1.6 Status String (\$GPNVS,6) Status Bytes	9
1.6.1 Status String (\$GPNVS,6) Status Bytes; Standard	9
1.6.2 Status String (\$GPNVS,6) Status Bytes; Rubidium	10
1.7 Status String (\$GPNVS,7) Status Bytes	11
1.8 Event String (\$GPNVS,8) Event Status	12
1.9 Status String (\$GPNVS,9) Frequency Measurement	13
1.9.1 Standard Frequency Measurement String	13
1.9.2 NR6720-HS Frequency Measurement String	14
1.10 PPS Alignment String (\$GPNVS,10) PPS Status	15
1.12 PPS Alignment String (\$GPNVS,9) PPS Status	16
1.11 Response String (\$GPNVS,R)	17
1.12 Discipline Selection String (\$GPNVS,13)	18
2.0 Combined NMEA/Status RS232	19
2.1 Status String (\$GPNVS,1) Fault Bytes	19
2.2 Status String (\$GPNVS,2) Channel Values	20
2.3 Status String (\$GPNVS,3) Power Supply Values	21
3.0 Status Byte Key	22

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.0 The \$GPNVS Serial Status String

Novus products provide, in many cases, serial data output from a standard GNSS receiver matching the NMEA 0183 protocol. This is usually a direct connection to the receiver.

In addition to NMEA, Novus Products which provide an additional RS232 serial port for status monitoring, will be set up to meet the following protocols. These are designed to be standardized across different products, and easy to port and use via serial-to-ethernet connections.

Many products will have some, but not all, of the following strings, if configured for the optional status RS232.

The following products comply with this document:

- 1. ND0115
- 2. NR2310-OG
- 3. NR2315
- 4. NR2110-O
- 5. NR2110-OG (Separate Status Port)
- 6. NR2110-OG (Combined NMEA/Status Port)
- 7. NR6720
- 8. NR2304

Note: The NR2110-OG with combined NMEA and Status Port complies with section 2.0 "Combined NMEA/Status RS232"

Page #:	3 of 24	www.novuspower.com	
---------	---------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.1 Status String (\$GPNVS,1) Fault Bytes

\$GPNVS	1	hhmmss	mmddyy	Α	Α	nn	nn	0x0000	0x00	0x00	n	n	*	XX
1	2	3	4	5	6	7	8	9	10	11	12	13		14

# Description	Range
1. Identifier	\$GPNVS
2. String ID	1
3. Time (UTC)	hhmmss
4. Date	mmddyy
5. GPS 1 Lock (Valid)	"A" = Valid, "V" = Not Valid, "N" = N/A
6. GPS 2 Lock (Valid)	"A" = Valid, "V" = Not Valid, "N" = N/A
7. # of Sats in View (1)	Greater of GPS or GNSS count, "N" = N/A
8. # of Sats in View (2)	Greater of GPS or GNSS count, "N" = N/A
9. Channel Fault Byte	0x0000 to 0xFFFF (Hex OR'd value)
10. Power Supply Fault Byte	0x00 to 0xFF (Hex OR'd value)
11. Error Message Byte	0x00 to 0xFF (Hex OR'd value)
12. Antenna 1	"0" = Ok , "1" = $Error$, " N " = N/A
13. Antenna 2	"0" = Ok , "1" = $Error$, " N " = N/A
14. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,1,233518,092516,A,A,10,11,0x0000,0x00,0x00,0x00,0*23

Page #:	4 of 24	www.novuspower.com	
---------	---------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.2 Status String (\$GPNVS,2) Channel Values 1-8

\$GPNVS	2	hhmmss	ddmmyy	n.nn	*	XX							
1	2	3	4	5	6	7	8	9	10	11	12		13

<u># Description</u>	Range
1. Identifier	\$GPNVS
2. String ID	2
3. Time (UTC)	hhmmss
4. Date	mmddyy
5. Channel 1 Vrms	0.00 to 3.30 [V]
6. Channel 2 Vrms	0.00 to 3.30 [V]
7. Channel 3 Vrms	0.00 to 3.30 [V]
8. Channel 4 Vrms	0.00 to 3.30 [V]
9. Channel 5 Vrms	0.00 to 3.30 [V]
10. Channel 6 Vrms	0.00 to 3.30 [V]
11. Channel 7 Vrms	0.00 to 3.30 [V]
12. Channel 8 Vrms	0.00 to 3.30 [V]
13. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,2,233518,092516,2.56,2.48,2.51,2.60,2.44,2.53, 2.51,2.60*6C

Note: For units with fewer than the number of channels listed, a null value will be present.

Page #:	5 of 24	www.novuspower.com	
---------	---------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.3 Status String (\$GPNVS,3) Power Supply Values

\$GPNVS	3	hhmmss	ddmmyy	n.nn	n	nn	*	XX							
1	2	3	4	5	6	7	8	9	10	11	12	13	14		15

# Description	Range
1. Identifier	\$GPNVS
2. String ID	3
3. Time (UTC)	hhmmss
4. Date	mmddyy
5. Power Supply 1	-30.0 to 30.0 [V]
6. Power Supply 2	-30.0 to 30.0 [V]
7. Power Supply 3	-30.0 to 30.0 [V]
8. Power Supply 4	-30.0 to 30.0 [V]
9. Power Supply 5	-30.0 to 30.0 [V]
10. Power Supply 6	-30.0 to 30.0 [V]
11. Power Supply 7	-30.0 to 30.0 [V]
12. Power Supply 8	-30.0 to 30.0 [V]
13. Built in Test (BIT)	0 = Ok, $1 = Fail$
14. Temperature (C)	-40 to 99
15. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,3,233518,092516,-7.84,7.93,-11.8,12.1,0.00,0.00,0.00,1.92,0, 26*62

Note: Depending on configuration, Power Supply values will be defined differently, and some Power Supply values may not be present.

Page #:	6 of 24	www.novuspower.com		
---------	---------	--------------------	--	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.4 Status String (\$GPNVS,4) Channel Values 9-16

\$GPNVS	4	hhmmss	ddmmyy	n.nn	*	XX							
1	2	3	4	5	6	7	8	9	10	11	12		13

Range
\$GPNVS
4
hhmmss
mmddyy
0.00 to 3.30 [V]
*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,4,233518,092516,2.56,2.48,2.51,2.60,2.44,2.53,2.51,2.60*6A

Note: For units with fewer than the number of channels listed, a null value will be present.

Page #:	7 of 24	www.novuspower.com	
---------	---------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.5 Status String (\$GPNVS,5) Sensors

\$GPNVS	5	hhmmss	ddmmyy	nnn	nn	±nn	*	XX
1	2	3	4	5	6	7		8

# Description	Range
1. Identifier	\$GPNVS
2. String ID	5
3. Time (UTC)	hhmmss
4. Date	mmddyy
5. Potentiometer	Hex Value 000 to FFF
6. Fan PWM %	0 to 90
7. Temperature	-40 to 99 [C]
8. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,5,233518,092516,45,00,25*70

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.6 Status String (\$GPNVS,6) Status Bytes

There are two different Status Strings; one for everything except the NR2304 and one for the NR2304.

1.6.1 Status String (\$GPNVS,6) Status Bytes; Standard

\$GPNVS	6	0	Α	0	0x0000	0x00	0x00	0x00	0	0x0000	0x0000	0x0000	*	XX	
1	2	3	4	5	6	7	8	9	10	11	12	13		14	

<u># Description</u>	Range
1. Identifier	\$GPNVS
2. String ID	6
3. Active PCB Assembly	0 or 1
4. GNSS Lock	A = Locked, V = Unlocked
5. Input Error	0 = Ok, $1 = A Error$, $2 = B error$
6. Channel Status Word	0x0000 to 0xFFFF
7. Primary PS Status	0x00 to $0xFF$
8. Secondary PS Status	0x00 to $0xFF$
9. Active PCB Status	0x00 to $0xFF$
10. Checksum Status	00 to 999
11. Channel Fault Bin	0x0000 to 0xFFFF
12. Primary PCB Amp Status	0x0000 to 0xFFFF
13. Backup PCB Amp Status	0x0000 to 0xFFFF
14. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,6,0,A,0,0x00000,0x40,0x40,0x00,00,0x00000,0x00000,0x00000*63

See Status Byte Table for details.

Page #:	9 of 24	www.novuspower.com		
---------	---------	--------------------	--	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.6.2 Status String (\$GPNVS,6) Status Bytes; Rubidium

\$GPNVS	6	nnn	0x0000	nnn	0/1	*	XX
1	2	3	4	5	6		7

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	6
3.	Heat Sink Temperature	0-255
4.	Heater Current Voltage	0x0000-0x0136
5.	Measured Voltage in Heater	0-255
6.	Rb Locked	0 = Unlocked 1= Locked
7.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,9,136,0x002A,90,1*7E

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.7 Status String (\$GPNVS,7) Status Bytes

\$GPNVS	7	nnnnnn	nnnnnn	Α	nn	0x00	0	0	0	nnnnnn	n.nn	n.nn	*	XX
1	2	3	4	5	6	7	8	9	10	11	12	13		14

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	7
3.	Time	hhmmss
4.	Date	mmddyy
5.	GPS Lock	"A" = Valid, "V" = Not Valid
6.	# of Sats in View (1)	Greater of GPS or GNSS count, "N" = N/A
7.	Error Byte	0x00 to $0xFF$
8.	Freq Diff	±999 (last count, clock cycles)
9.	PPS Diff	±999 (last count, clock cycles)
10.	Freq Correction Slice	±999 (DAC bits, per second)
11.	DAC Value	Integer Representation, n x 1/(2^20)
12.	Power Supply	Vdc
13.	Power Supply	Vdc
14.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,7,161505,081617,A,12,0x00,-1,-2,0,505610,+5.05,-4.66*58

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.8 Event String (\$GPNVS,8) Event Status

\$GPNVS	8	0	0	0	0	0	0	0	nnnnnn	0	*	XX
1	2	3	4	5	6	7	8	9	10	11		12

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	8
3.	Discipline Counter	0 = Off, $1 = Disciplined to Synthetic PPS$
4.	User Enabled	0 = Off, 1 = On
5.	Event Enabled (System)	0 = Events Disabled, 1 = Events Enabled
6.	GPS Lock Achieved	0 = No Lock, 2 = Locked or previously locked
7.	Event Index	0-512, Current count of events in RAM
8.	Event Errors (RAM)	0
9.	Event Index	0-512, Current count of events in Flash
10	Event Errors (Flash)	0
11.	Event Time Alignmet	2 = LS applied, $1 = GPS$, $0 = RTC$
12	Estimated Accuracy	0-999999 [ns]
13.	Edge Detect Direction	0 = Falling Edge, 1 = Rising Edge
14.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,8,1,1,1,2,0,0,2,000005,0*60

Page #:	12 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.9 Status String (\$GPNVS,9) Frequency Measurement

The frequency measurement string has two versions, one standard version, and one for the NR6720.

1.9.1 Standard Frequency Measurement String

\$GPNVS	9	hhmmss	ddmmyy	(n)nnnnnnn.nnn	nnn	(-)nn	*	XX
1	2	3	4	5	6	7		8

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	9
3.	Time (UTC)	hhmmss
4.	Date	mmddyy
5.	Measured Frequency	9999900.000 to 10000100.000
6.	Frequency Alert Range	0 - 240 (units of 0.0083 Hz)
7.	Temperature	-40 to 99 [C]
8.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,9,233518,092516,10000000.003,240,25*70

Page #:	13 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.9.2 NR6720-HS Frequency Measurement String

\$GPNVS	9	nnnnnn.nnn	n.nnnnn	nnnnnnn.nn	0	±n.nn	±n.nn	*	XX
1	2	3	4	5	6	7	8		9

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	9
3.	Frequency (Loop Period)	10000000.000
4.	DAC Voltage (Double)	2.00000
5.	Frequency (per second)	10000000.0
6.	Loop Period	0-99
7.	Antenna Current Mon	0.00 to 3.30V
8.	Sine Output RMS	0.00 to 3.30V
9.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,9,+10000000.003,+1.97493,+10000000.0,15,+1.03,+1.30*4A

Page #:	14 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.10 PPS Alignment String (\$GPNVS,10) PPS Status

\$GPNVS	10	0	0	0	±n	±n	n	n	n.n	n	n	n	0	±n	n.n	n	*	XX
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		18

1. Identifier \$GPNVS 2. String ID 10 3. PPS Stability Enabled 0 = Off, 1 = On 4. PPS Disciplining to GPS 0 = Off, 1 = Actively Synchronized 5. PPS Output Type 0 = Synthetic PPS, 1 = GPS PPS 6. PPS Difference ±250 [ns] 7. PPS Avg Difference ±250 [ns] 8. PPS Avg Count 1-20 9. PPS Synch Threshold 1-250 10. PPS pull Cal Factor 0.1 to 10.0 11. PPS active Time Cal Factor 0 to 9 12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
 3. PPS Stability Enabled 4. PPS Disciplining to GPS 5. PPS Output Type 6. PPS Difference 7. PPS Avg Difference 8. PPS Avg Count 9. PPS Synch Threshold 1-250 10. PPS pull Cal Factor 11. PPS active Time Cal Factor 12. Frequency Variance 13. Frequency Var Threshold 10. PPS pull Cal Factor 10. PPS pull Cal
 4. PPS Disciplining to GPS 5. PPS Output Type 6. PPS Difference 7. PPS Avg Difference 8. PPS Avg Count 9. PPS Synch Threshold 10. PPS pull Cal Factor 11. PPS active Time Cal Factor 12. Frequency Variance 13. Frequency Var Threshold 14. PPS Difference 15. PPS PPS PPS 16. PPS PPS 17. PPS active Time Cal Factor 18. PPS Avg Count 19. PPS pull Cal Factor 10. PPS pull Cal Factor 10. Oto 9 10. PPS pull Cal Factor 10. Oto 9 10. Oto 9
5. PPS Output Type 0 = Synthetic PPS, 1 = GPS PPS 6. PPS Difference ±250 [ns] 7. PPS Avg Difference ±250 [ns] 8. PPS Avg Count 1-20 9. PPS Synch Threshold 1-250 10. PPS pull Cal Factor 0.1 to 10.0 11. PPS active Time Cal Factor 0 to 9 12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
6. PPS Difference ±250 [ns] 7. PPS Avg Difference ±250 [ns] 8. PPS Avg Count 1-20 9. PPS Synch Threshold 1-250 10. PPS pull Cal Factor 0.1 to 10.0 11. PPS active Time Cal Factor 0 to 9 12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
7. PPS Avg Difference ±250 [ns] 8. PPS Avg Count 1-20 9. PPS Synch Threshold 1-250 10. PPS pull Cal Factor 0.1 to 10.0 11. PPS active Time Cal Factor 0 to 9 12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
 PPS Avg Count PPS Synch Threshold PPS pull Cal Factor PPS active Time Cal Factor Frequency Variance Frequency Var Threshold PPS avg Count 1-20 10.0 10.0
9. PPS Synch Threshold 1-250 10. PPS pull Cal Factor 0.1 to 10.0 11. PPS active Time Cal Factor 0 to 9 12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
10. PPS pull Cal Factor 11. PPS active Time Cal Factor 12. Frequency Variance 13. Frequency Var Threshold 10. 10.0 10.0 10.0 10.0 10.0 10.0 10.0
11. PPS active Time Cal Factor 0 to 9 12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
12. Frequency Variance 0-9999 (clock cycles per Loop period) 13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
13. Frequency Var Threshold 0-100 (clock cycles per Loop period)
14 DDC Stabile Mode Post Worm you 0 - Off 1 - On
14. PPS Stabile Mode Post-Warm up $0 = Off$, $1 = On$
15. PPS Slope Indicator ± 250 (clock cycles per second)
16. PPS Slope Cal Factor 0.1 to 10.0
17. PPS Slope Distance 14 to 60 (seconds)
18. NMEA Checksum *XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,10,1,0,0,+0,+0,2,100,0.5,3,2,10,1,0,1.0*46

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.12 PPS Alignment String (\$GPNVS,9) PPS Status

\$GPNVS	9	nnn	0x0000	nnn	0/1	*	XX
1	2	3	4	5	6		7

#	Description	Range
8.	Identifier	\$GPNVS
9.	String ID	9
10.	Heat Sink Temperature	0-255
11.	Heater Current Voltage	0x0000-0x0136
12.	Measured Voltage in Heater	0-255
13.	Rb Locked	0 = Unlocked 1= Locked
14.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,9,136,0x002A,90,1*7E

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.11 Response String (\$GPNVS,R)

\$GPNVS	R	n	<response></response>	*	XX
1	2	3	4		5

#	Description	Range
1.	Identifier	\$GPNVS
2.	Response ID	R
3.	Command Success	1 = Success, 0 = Fail
4.	Response	<see example="" responses=""></see>
5.	NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,R,SET01=1.00*6F

Page #:	17 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

1.12 Discipline Selection String (\$GPNVS,13)

\$GPNVS,	13,	n,	n,	n,	n,	n,	,	,	*	XX
1	2	3	4	5	6	7	8	9		10

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	13
3.	Priority Discipline Source	0 = GNSS, $1 = 10MHz$ input, $2 = Optical$ input
4.	Current Discipline Source	0 = GNSS, $1 = 10MHz$, $2 = Optical$, $3 = Holdover$
5.	GNSS Lock	0 to 3, 0 = Unlocked, 3 = Fully Locked
6.	RF Present	0 = No RF source, 1 = RF Source found
7.	Opto Present	0 = No Optical source, $1 = $ Optical Source Found
8.	Loop Lock	1 = Lock, $0 = Loop$ acquiring lock
9.	Reserved	
10	. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,13,0,0,3,0,0,1,*5C

Page #:	18 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

2.0 Combined NMEA/Status RS232

NR2110-OG Combined NMEA? Status Port

2.1 Status String (\$GPNVS,1) Fault Bytes

\$GPNVS	1	hhmmss	mmddyy	Α	nn	0x00	0x00	0x00	*	XX
1	2	3	4	5	6	7	8	9		10

# Description	Range
15. Identifier	\$GPNVS
16. String ID	1
17. Time (UTC)	hhmmss
18. Date	mmddyy
19. GPS Lock (Valid)	"A" = Valid, "V" = Not Valid
20. # of Sats in View	Greater of GPS or GNSS count
21. Channel Fault Byte	0x00 to 0x3F (Hex OR'd value)
22. Power Supply Fault Byte	0x00 to 0x1F (Hex OR'd value)
23. Error Message Byte	0x00 to 0x0F (Hex OR'd value)
24. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,1,233518,092516,A,10,0x00,0x00,0x00*62

Time: 23:35:18; Sep. 25, 2016, GPS locked; 10 Satellites in view; No channel

faults; No power supply faults; No error messages.

Page #:	19 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

2.2 Status String (\$GPNVS,2) Channel Values

\$GPNVS	1	hhmmss	mmddyy	n.nn	n.nn	n.nn	n.nn	n.nn	n.nn	*	XX
1	2	3	4	5	6	7	8	9	10		11

# Description	Range
14. Identifier	\$GPNVS
15. String ID	2
16. Time (UTC)	hhmmss
17. Date	mmddyy
18. Channel 1 Vrms	0.00 to 6.60 [V]
19. Channel 2 Vrms	0.00 to 6.60 [V]
20. Channel 3 Vrms	0.00 to 6.60 [V]
21. Channel 4 Vrms	0.00 to 6.60 [V]
22. Channel 5 Vrms	0.00 to 6.60 [V]
23. Channel 6 Vrms	0.00 to 6.60 [V]
24. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,2,233518,092516,0.99,1.01,1.06,0.97,1.52,1.54*4E

Page #:	20 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS	
Revision #:	R	
Date:	8/25/20	

2.3 Status String (\$GPNVS,3) Power Supply Values

\$GPNVS	3	hhmmss	mmddyy	n.nn	n.nn	n.nn	n.nn	n.nn	*	XX
1	2	3	4	5	6	7	8	9		10

# Description	Range
15. Identifier	\$GPNVS
16. String ID	2
17. Time (UTC)	hhmmss
18. Date	mmddyy
195Vdc Power Supply(opt)	-30.0 to 30.0 [V]
20. +5Vdc Power Supply	-30.0 to 30.0 [V]
21. $10k\Omega$ Thermistor(opt)	0.00 to 3.30 [V]
22. +5Vdc Power Supply(opt)	-30.0 to 30.0 [V]
23. OCXO Control Voltage	0.00 to 3.30 [V]
24. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,3,233518,092516,-4.84,4.93,1.45,4.90,2.12*42

Page #:	21 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS	
Revision #:	R	
Date:	8/25/20	

3.0 Status Byte Key

	Hex Value (OR'd)	Channel ID	Channel Status Word
	0x1<<0	Channel 1 Fault	
	0x1<<1	Channel 2 Fault	
	0x1<<2	Channel 3 Fault	
	0x1<<3	Channel 4 Fault	
	0x1<<4	Channel 5 Fault	
	0x1<<5	Channel 6 Fault	
Channel Status Byte	0x1<<6	Channel 7 Fault	
	0x1<<7	Channel 8 Fault	General Channel Fault
	0x1<<8	Channel 9 Fault	
	0x1<<9	Channel 10 Fault	
	0x1<<10	Channel 11 Fault	
	0x1<<11	Channel 12 Fault	
	0x1<<12	Channel 13 Fault	
	0x1<<13	Channel 14 Fault	
	0x1<<14	Channel 15 Fault	

	Hex Value (OR'd)	Channel ID	Channel Fault Bin
	0x1<<0	Channel 1 Fault	
	0x1<<1	Channel 2 Fault	
	0x1<<2	Channel 3 Fault	External Fault: The
	0x1<<3	Channel 4 Fault	ND0100 has completed
	0x1<<4	Channel 5 Fault	an internal amplifier gain
	0x1<<5	Channel 6 Fault	test and both primary
Channel Fault Bin	0x1<<6	Channel 7 Fault	and backup assemblies
Chainlei Fault Bill	0x1<<7	Channel 8 Fault	are functional. The fault is external to the ND0100
	0x1<<8	Channel 9 Fault	(cabling, short, etc)
	0x1<<9	Channel 10 Fault	(cabing, short, etc)
	0x1<<10	Channel 11 Fault	Amp Gain Test for Alert is
	0x1<<11	Channel 12 Fault	enabled with \$AMP=1
	0x1<<12	Channel 13 Fault	command via RS232
	0x1<<13	Channel 14 Fault	
	0x1<<14	Channel 15 Fault	

Page #:	22 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS	
Revision #:	R	
Date:	8/25/20	

	Hex Value (OR'd)	Channel ID	Primary PCB Amp Status
	0x1<<0	Channel 1 Fault	
	0x1<<1	Channel 2 Fault	
	0x1<<2	Channel 3 Fault	Internal Fault Primary
	0x1<<3	Channel 4 Fault	Assembly: The channel
	0x1<<4	Channel 5 Fault	has failed an internal
	0x1<<5	Channel 6 Fault	gain test on the primary
Primary PCB Amp Status	0x1<<6	Channel 7 Fault	PCB assembly, and the
Filliary FCB Allip Status	0x1<<7	Channel 8 Fault	channel is not functional
	0x1<<8	Channel 9 Fault	on the primary board.
	0x1<<9	Channel 10 Fault	
	0x1<<10	Channel 11 Fault	Amp Gain Test for Alert is
	0x1<<11	Channel 12 Fault	enabled with \$AMP=1
	0x1<<12	Channel 13 Fault	command via RS232
	0x1<<13	Channel 14 Fault	
	0x1<<14	Channel 15 Fault	

	Hex Value (OR'd)	Channel ID	Backup PCB Amp Status
	0x1<<0	Channel 1 Fault	
	0x1<<1	Channel 2 Fault	
	0x1<<2	Channel 3 Fault	Internal Fault Backup
	0x1<<3	Channel 4 Fault	Assembly: The channel
	0x1<<4	Channel 5 Fault	has failed an internal
	0x1<<5	Channel 6 Fault	gain test on the backup
Packup DCP Amp Status	0x1<<6	Channel 7 Fault	PCB assembly, and the
Backup PCB Amp Status	0x1<<7	Channel 8 Fault	channel is not functional
	0x1<<8	Channel 9 Fault	on the secondary board.
	0x1<<9	Channel 10 Fault	
	0x1<<10	Channel 11 Fault	Amp Gain Test for Alert is
	0x1<<11	Channel 12 Fault	enabled with \$AMP=1
	0x1<<12	Channel 13 Fault	command via RS232
	0x1<<13	Channel 14 Fault	
	0x1<<14	Channel 15 Fault	

Page #:	23 of 24	www.novuspower.com	
---------	----------	--------------------	--

Users manual	\$GPNVS
Revision #:	R
Date:	8/25/20

	Hex Value (OR'd)	Status Message	
	0x1<<0	Flash Read Boot Error (Deprecated)	
	0x1<<1	Potentiometer Read/Set Fail	
	0x1<<2	Reserved	
Active Board Status	0x1<<3	Reserved	
Status	0x1<<4	PCB Assembly Input A/B Select Fail	
	0x1<<5	Reserved	
	0x1<<6	Reserved	
	0x1<<7	Reserved	

	Hex Value (OR'd)	Status Message
	0x1<<0	PS 1 Fault
	0x1<<1	PS 2 Fault
Primary and	0x1<<2	PS 3 Fault
Secondary Power	0x1<<3	PS 4 Fault
Supply Status	0x1<<4	PS 5 Fault
	0x1<<5	PS 6 Fault
	0x1<<6	PS 7 Fault
	0x1<<7	PS 8 Fault

	Hex Value (OR'd)	Status Message
	0x1<<0	FLASH_NOT_FOUND
	0x1<<1	FLASH_NOT_SAVED
	0x1<<2	LOOP_VOLT_ERROR
Error Status	0x1<<3	ANTENNA_VOLT_ERROR
	0x1<<4	GPS_FAILURE
	0x1<<5	POTENTIOMETER_ERROR
	0x1<<6	RAM_MEMORY_ERROR
	0x1<<7	Reserved

Page #:	24 of 24	www.novuspower.com	
---------	----------	--------------------	--

User's manual	SNMP
Revision #:	F
Date:	7/15/21

User Manual SNMP

Appendix D: SNMP Configuration

All information provide herein is the proprietary property of Novus Power Products L.L.C. The information included may be reproduced without the permission of Novus Power Products L.L.C. without prior approval for purpose of operating the equipment.

Page #: 1 of 12 www.novuspower.com

User's manual	SNMP
Revision #:	F
Date:	7/15/21

www.novuspower.com

Contents

1.0 SNMP Network Configuration	3
1.1 Default Settings	
1.2 Login - Ethernet	
1.3 Login - Serial RS232 (Rear Panel)	
1.4 Default Login	
1.5 Navigation	
1.6 Static/Dynamic setting IP Address	
1.7 Change Password	Error! Bookmark not defined.
1.8 SNMP Agent	
1.10 SNMP: \$GPNVS NMEA Data	
1.11 Serial Commands via SNMP	
1.12 Troubleshooting	

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.0 SNMP Network Configuration

Novus products configured with SNMP option will act as an SNMP agent, providing detailed status and health information about the unit.

1.1 Default Settings

By default, the IP address of the Novus product is statically assigned. The default settings are:

Field	Setting
Network	Static
IP Address	192.168.7.200
Subnet Mask	255.255.255.0
Default Gateway	192.168.7.254

To change the IP address or other settings, follow the Login procedure in section 1.2.

Login	Password
root	novus123

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.2 Setting Static IP via the RS232 Serial Port

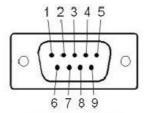
The Linux NTP/SNMP submodule static IP address can be updated via the serial port. The user should set and query each of the following in order:

Command	Description
\$ETHIP	Static IP Address
\$ETHMK	Subnet Mask
\$ETHGW	Default Gateway
\$ETHUP	Update submodule

When the \$ETHIP, \$ETHMK, and \$ETHGW commands are set and verified by query, the user can send the \$ETHUP command to send the new values to the linux submodule, and reset.

Setting	Command	Response	Description
	\$ETHIP		Set or query IP address buffer to send to onboard
\$ETHIP=192.168.7.200 \$ETHIP=n.n.n.n	Linux SNMP/NTP linux module. Set in conjunction with \$ETHMK and \$ETHGW. When all three are set, forward to module with \$ETHUP command.		
SUBNET MASK	\$ETHMK	\$ETHMK=255.255.255.0	Set or query Subnet Mask buffer to send to onboard Linux SNMP/NTP linux module. Set in
SOBNET WINDS	\$ETHMK=n.n.n.n		conjunction with \$ETHIP and \$ETHGW. When all three are set, forward to module with \$ETHUP command.
DEFAULT	\$ETHGW	\$ETHGW=192.168.7.254	Set or query Default Gateway buffer to send to onboard Linux SNMP/NTP linux module. Set in
GATEWAY	GATEWAY \$ETHGW=n.n.n.n	conjunction with \$ETHIP and \$ETHMK. When all three are set, forward to module with \$ETHUP command.	
UPDATE LINUX SUBMODULE ETHERNET ROUTE	\$ETHUP	\$ETHUP	After setting IP ADDRESS, SUBNET MASK, and DEFAULT GATEWAY, send the \$ETHUP command to update the route table on the Linux SNMP/NTP module. The module will restart and the displayed IP Address information will update after this command is sent.

Page #: 4 of 12	www.novuspower.com
-----------------	--------------------


User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.3 Serial RS232 (Rear Panel)

To connect to the rear panel RS232 port. You will need a serial cable with pinout that is shown below.

This RS232 level port defaults as the NMEA/Command interface and can be accessed by your preferred terminal program such as PuTTY, using a Serial Com port. The default baud rate is 38400 (depending on the model), 8 bit, no parity, 1 stop bit. (Note: Remember to check the pinout.)

RS232 Serial Port: Rear Panel Pin Connections

Male DB-9

Pin	Function	I/O
1	NC	
2	Command Port RX	I
3	Command Port TX	0
4	NC	
5	GND	GND
6	NC	
7	NC	
8	NC	
9	NC	

Page #:	5 of 12	www.novuspower.com	
_			

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.3 Login - Ethernet

Use a terminal such as PuTTY to open an SSH connection to IP address of the unit on Port 22. You will see the "login as:" prompt, where you can enter the login and password.

Proceed to 1.4.

1.4 Default Login

Login using the default login and password:

Login	Password
root	novus123

login as: root

root@xxx.xxx.xxx's password: novus123

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.8 SNMP Agent

The Novus unit features an onboard Linux submodule operating as an SNMPv2 agent. The SNMP data is broadcast from the unit on Port 161. SNMP traps are communicated on Port 162.

Read Community and Write Community is "novus."

The software Novus SNMP Agent is automatically started on bootup.

The SNMP agent OID values are pulled from the \$GPNVS string data and include all the available status output that the \$GPNVS strings provide. Not all Novus units provide all \$GPNVS strings, or all specific parameters in \$GPNVS strings. The fields populated in the OIDs are from the specific unit's \$GPNVS values. Any fields not available from \$GPNVS strings will be a null value.

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.10 SNMP: \$GPNVS NMEA Data

A selection of the \$GPNVS field values are used to populate the SNMP OIDs. This allows much of the direct monitoring of the serial RS232 port to be done via the SNMP browser.

SNMP	\$GPNVS String	\$GPNVS String Field	Data Type
nsFaultsObjs	Julia	riela	Data Type
nsFaultGPS1Lock.0	1	5	Integer
nsFaultGPS2Lock.0	1	6	Integer
nsFaultSatView1.0	1	7	Gauge
nsFaultSatView2.0	1	8	Gauge
nsFaultChannelBytes.0	1	9	OctetString
nsFaultPowerSupplyByte.0	1	10	OctetString
nsFaultErrMsgByte.0	1	11	OctetString
nsFaultAnt1Stat.0	1	12	Integer
nsFaultAnt2Stat.0	1	13	Integer
nsChannelObjs	•		
nsChannel1Vrms.0	2	5	OctetString
nsChannel2Vrms.0	2	6	OctetString
nsChannel3Vrms.0	2	7	OctetString
nsChannel4Vrms.0	2	8	OctetString
nsChannel5Vrms.0	2	9	OctetString
nsChannel6Vrms.0	2	10	OctetString
nsChannel7Vrms.0	2	11	OctetString
nsChannel8Vrms.0	2	12	OctetString
nsChannel9Vrms.0	4	5	OctetString
nsChannel10Vrms.0	4	6	OctetString
nsChannel11Vrms.0	4	7	OctetString
nsChannel12Vrms.0	4	8	OctetString
nsChannel13Vrms.0	4	9	OctetString
nsChannel14Vrms.0	4	10	OctetString
nsChannel15Vrms.0	4	11	OctetString
nsChannel16Vrms.0	4	12	OctetString

Page #: 8 of 12

User's manual	SNMP
Revision #:	F
Date:	7/15/21

SNMP	\$GPNVS String	\$GPNVS String Field	Data Type
nsStatusPSObjs			
nsPS1Status.0	3	5	OctetString
nsPS2Status.0	3	6	OctetString
nsPS3Status.0	3	7	OctetString
nsPS4Status.0	3	8	OctetString
nsPS5Status.0	3	9	OctetString
nsPS6Status.0	3	10	OctetString
nsPS7Status.0	3	11	OctetString
nsPS8Status.0	3	12	OctetString
nsBITStatus.0	3	13	Integer
nsPSTemp.0	3	14	OctetString
nsSensorObjs			_
nsSensorPotentiometer.0	5	5	Gauge
nsSensorFanPWM.0	5	6	Gauge
nsSensorTemperature.0	5	7	OctetString
nsSysObjs			_
nsSysIdentifier.0			OctetString
nsSysActivePCBAssy.0	6	3	Gauge
nsSysGNSSLock.0	6	4	Integer
nsSysInputErr.0	6	5	Integer
nsSysChanStatusWord.0	6	6	OctetString
nsSysPriPSStatus.0	6	7	OctetString
nsSysSecPSStatus.0	6	8	OctetString
nsSysActivePCBStatus.0	6	9	OctetString
nsSysChksumStatus.0	6	10	Gauge
nsSysChanFaultBin.0	6	11	Gauge
nsSysPriPCBAmpStatus.0	6	12	OctetString
nsSysBkupPCBAmpStatus.0	6	13	OctetString

Page #: 9	9 of 12	www.novuspower.com	
------------------	---------	--------------------	--

User's manual	SNMP
Revision #:	F
Date:	7/15/21

SNMP	\$GPNVS String	\$GPNVS String Field	Data Type
nsSysGPSLock.0	7	5	Integer
nsSysSatView.0	7	6	Gauge
nsSysErrorByte.0	7	7	OctetString
nsSysFreqDiff.0	7	8	OctetString
nsSysPPSDiff.0	7	9	OctetString
nsSysFreqCorSlice.0	7	10	OctetString
nsSysDACValue.0	7	11	Gauge
nsSysPS1VDC.0	7	12	OctetString
nsSysPS2VDC.0	7	13	OctetString
nsEventObjs			
nsEventDiscCounter.0	8	3	Integer
nsEventUserEnabled.0	8	4	Integer
nsEventSysEnabled.0	8	5	Integer
nsEventGPSLock.0	8	6	Integer
nsEventRAMIndex.0	8	7	Gauge
nsEventTimeAlignment.0	8	8	Integer
nsEventEstAccuracy.0	8	9	Gauge
nsEventEdgeDetDir.0	8	10	Integer
nsMeasureObjs			
nsMeasureFreq.0	9	3	OctetString
nsMeasureAlert.0	RES	RES	OctetString
nsMeasureTemp.0	3	14	OctetString
nsPPSObjs			
nsPPSStability.0	10	3	Integer
nsPPSDiscGPS.0	10	4	Integer
nsPPSOutputType.0	10	5	Integer
nsPPSDifference.0	10	6	OctetString
nsPPSCalFactor.0	10	10	OctetString
nsPPSTimeCalFactor.0	10	11	Gauge
nsPPSFreqVar.0	10	12	Gauge

Page #:	10 of 12	www.novuspower.com	
---------	----------	--------------------	--

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.11 Serial Commands via SNMP

The SNMP configuration allows the same RS232 serial commands from the Programmer's Guide to be sent over the SNMP browser interface.

To send a serial command, issue an SNMP set on the "nsCommand" OID. Change the value of the OctetString to the desired serial command. Upon a successful Set, the "nsResult" field will contain the response from the unit.

User's manual	SNMP
Revision #:	F
Date:	7/15/21

1.12 Troubleshooting

If changes were made to the network settings that render the unit unable to communicate, please contact customer service for instructions on writing to the SSD card directly.