

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

NR4600-O/G

PC104 Six Channel GNSS-Locked Reference with Auto-Cal

All information provided herein is the property of Novus Power Products L.L.C. The information included may be reproduced without the permission or prior approval of Novus Power Products L.L.C. for the purpose of operating the equipment.

Page #:	1 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

Contents

1.0 Summary	3
2.0 Controls and Indicators 2.1 Power LED 2.2 Lock LED 2.3 Satellite Number Counter LED 2.4 Six Channel LED	6 6
3.0 Inputs / Outputs 3.1 GNSS Antenna 3.2 PPS - 3.3 10 MHz sine - Six SMA 3.4 RS232 - DB9 (Dual) 3.5 RS232 - DB9 (Single) 3.6 Power Connector	8 8 9
4.0 Typical Phase Noise	13
5.0 Built-in Test	14
6.0 Power	14
7.0 GNSS Function	15
8.0 Programming Guide (STATUS Port)	21 21
9.0 Mechanical	
10.0 Performance 10.1 Technical Specifications	25 26
11.0 LIMITED HARDWARE WARRANTY	
12.0 Appendix: GPS/GNSS Command Reference	28

Page #:	2 of 29	www.novuspower.com	
raye #.	2 01 23	www.novuspowen.com	

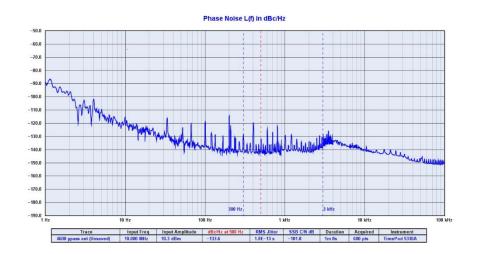
Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

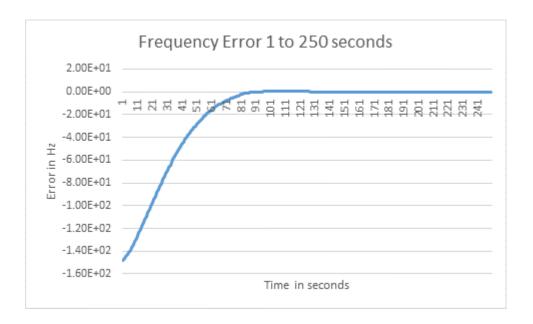
1.0 Summary

The NR4600-O/G is a GNSS-locked 10 MHz frequency reference with auto-calibration. It features six independent fault and transient protected channels. Each is monitored with an AC to DC converter that can be read over an RS232 port.

The unit also provides a PPS channel and NMEA 0183 at full RS232 levels. The RS232 ports can also be configured to operate at logic levels.

The overall design form factor is compliant with PC104 standards - simplifying installation.


The master timing is from a 26 channel GNSS receiver that supports GPS, GLONASS, SBAS, QZSS. By being able to receive data from multiple satellite constellations, lower TIFF is achieved. With twice the number of satellites in view, as a GPS only configuration, achieving and maintaining lock in poor signal environments is enhanced.


The signal source is a GNSS disciplined low noise OCXO, actively controlled by a mixed-signal phase-lock-loop. Typical phase noise performance follows.

Page #:	3 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

Page #:	4 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

Power can range from -60 to +60 VDC in three ranges. The power converter is electrically isolated from signal ground. Unit is transient and reverse polarity protected.

The NR4600-O/G continually monitors temperature and aging so that, when the unit goes into holdover or loses GNSS lock, the output frequency reverts to the last known locked frequency value. The calibration feature continually monitors the correction coefficients developed through GNSS timing information. These are sampled multiple times per day and stored in non-volatile memory and, in the event of a GNSS loss, the saved coefficients are applied to the OCXO. This effectively eliminates long-term crystal drift. Auto-Cal normally keeps the reference ±10 ppb.

There are two RS232 ports - one for NMEA 0183 and the other for unit status reporting. The NMEA port information and baud rate can be selected via commands detailed in the Appendix. The RS232 port provides the status of each channel and self-test results. The RS232 signals are made available through one DB-9 or a stacked DB-9 pair.

All inputs and outputs are electrostatic discharge protected. Any output can be shorted indefinitely with no permanent damage to the unit.

age #: 5 of 29	www.novuspower.com	
----------------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

2.0 Controls and Indicators

2.1 Power LED

The Power LED indicates voltage is applied to the 12V power input connector.

2.2 Lock LED

Indicates GPS/GNSS lock has been achieved. This indicator flashes a single short flash to indicate that the receiver is attempting to acquire lock. When GPS/GNSS lock has been achieved, the indicator may flash a single long flash until the OCXO has reached temperature. When both lock states are valid, the Lock LED will show a steady illumination.

GPS Locked / OCXO Loop Locked GPS Locked / OCXO Loop Unlocked GPS Tracking / Pending Lock

2.3 Satellite Number Counter LED

This LED flashes the number of satellites currently in view. If the unit will not lock or takes a long-time to lock - monitoring this LED could help troubleshoot the problem. If only a few satellites can be acquired, the antenna may need to be confirmed to make sure it has a clear view of the sky.

Page #:	6 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

2.4 Six Channel LED

Each channel has an AC to DC converter that is monitored. A faulted state will cause the normally constant ON LED to flash green. This will also be reported on the RS232 status bus.

3.0 Inputs / Outputs

Each output is fault and electrostatic discharge protected. Each output is independent and any output can be faulted for an indefinite period of time with no permanent damage. Each output is connected to a monitor circuit that detects a local fault on the output. The fault status is indicated for each of the 10 MHz outputs on a LED on the PCB or via the RS232 link.

3.1 GNSS Antenna

SMA female antenna connections. Provides internal 3.3VDC power at 45mA max. The Novus NA103 pole mount antenna or the Novus NA106 magnetic mount antenna are recommended for optimal performance.

The receiver and companion elements generate the PPS and NMEA serial link. The serial link conforms to NMEA 0183 protocol. The 26 channel high-sensitivity, high-accuracy Multi-GNSS receiver supports TRAIM, GPS, GLONASS, QZSS, SBAS, Active Anti-Jamming and Advanced Multipath Mitigation Functions.

Page #:	7 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

Typical Antenna Specifications:

Frequency Band 1574 – 1607 MHz Antenna Gain 2 dBic @ 90°

Amplifier Gain @ 3.0Vdc: 26dB (typ)

Polarization RHCP

Out-of-band Rejection >60dBc @ f0 ± 50MHz

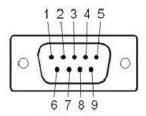
 $\begin{array}{lll} \text{Impedance} & 50\Omega \\ \text{VSWR} & 2.0 \text{ Max} \\ \text{DC Input} & 2.8 \text{V} - 6 \text{V} \\ \text{Noise Figure} & <2.0 \text{dB} \\ \text{Power Consumption} & 25 \text{mA (typ)} \end{array}$

3.2 PPS - **SMA**

The PPS is a one pulse per second, CMOS, 3.3V signal into 1KOhm. The pulse width is nominally 200 ms but can be programmed at the factory or in the field with the serial port (see Appendix A). The PPS may be advanced/delayed via serial port commands in 1 ns to compensate for antenna cabling delays. The PPS signal is also available optionally on the RS232 NMEA connector pin 1. This is normally not connected but is a factory installed jumper.

3.3 10 MHz sine - Six SMA

1 Vrms into 50 Ohms. The unit can be alternately configured to output a square wave.

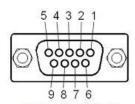

Page #:	8 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

3.4 RS232 - DB9 (Dual)

There are two RS232 connectors. The bottom connector (nearest the PCB) is for NMEA data and the top connector is for STATUS. The unit can be configured at the factory to also operate at 3.3 Vdc CMOS instead of the full RS232 levels. Appendix A goes into complete detail as to how to listen to and control the GNSS receiver.

Male DB-9

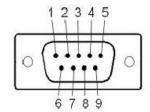

Pin	Function	I/O
1	NC	
2	NMEA port RX	I
3	NMEA Port TX	0
4	NC	
5	GND	REF
6	Status TX	О
7	Status RX	I
8	NC	
9	NC	

The top DB9 connector communicates with the onboard processor, and operates at RS232 levels. The status indications and alerts can be configured via this port. It is a female DB9 Connector.

Page #:	9 of 29	www.novuspower.com	
---------	---------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

Female DB-9


Pin	Function	1/0
1	NC	
2	STATUS port / Command Port TX	0
3	STATUS Port / Command Port RX	I
4	NC	
5	GND	
6	NC	
7	NC	
8	NC	
9	NC	

Page #:	10 of 29	www.novuspower.com	

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

3.5 RS232 - DB9 (Single)

Male DB-9

As an alternative to the stacked DB-9 connectors – the product is also configurable as a single MALE DB-9 as follows:

Pin	Function	I/O
1	NC	
2	NMEA Port TX	0
3	NMEA Port RX	1
4	NC	
5	GND	
6	Status TX	О
7	Status RX	I
8	BIT	0
9	NC	

The BIT (Built in Test) indicator is a composite AND of the following statuses, also available from the serial Status TX stream:

- GPS Locked
- No channel Faults
- No Power Supply Faults

If all the above conditions are met, the BIT status is HIGH (3V3), else, the BIT status is LOW (0V).

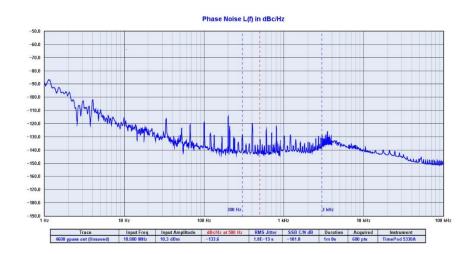
Page #: 11 of 29	www.novuspower.com	
------------------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

3.6 Power Connector

Mating connector: OnShore Technology Inc. Part# OSTTJ0211530

Pin 1: + (closest to the edge of the pcb) +VDC Pin 2: - -VDC


The unit draws < 6 Watts at turn-on and drops to < 3 W after the OCXO warms. During conditions at 25°C, the crystal will warm in less than three minutes.

Page #: 12 of 29 www.novuspower.com	Page #:
-------------------------------------	---------

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

4.0 Typical Phase Noise

10MHz Sine- Primary Output

Offset Frequency (Hz)	Typical (dBc / Hz)
10	-102
100	-110
1K	-140
10K	-145

There are optional phase noise performance levels available - contact factory.

∣ Page #:	13 of 29	www.novuspower.com	

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

5.0 Built-in Test

There are a number of power supplies in the design to meet special needs and noise reduction. Each supply is monitored and a power failure will be reported through the \$GPSNV status strings.

Channel faults are also monitored and reported via RS232.

The lock status is a combination of GNSS receiver lock and the Kalman filter locking. A failure of the Kalman filter to lock is considered a failure mode.

The BIT (Built in Test) indicator is a composite AND of the following statuses, also available from the serial Status TX stream:

- GPS Locked
- No channel Faults
- No Power Supply Faults

If all the above conditions are met, the BIT status is HIGH (3V3), else, the BIT status is LOW (0V).

6.0 Power

The platform is designed to operate from -60 to +60 VDC. This is done in three ranges.

±12 V (10-18 VDC) ±24 V (19-36 VDC) ±48 V (37-60 VDC)

Page #:	14 of 29	www.novuspower.com	
---------	----------	--------------------	--

	Users manual	NR4400-GNSS
	Revision #:	F
	Date:	07142020

The unit incorporates reverse polarity protection by having a diode bridge on the input power.

The unit is also fused with a 5 Amp slow blow.

Power < 6 watts. Power is highest at turn on as the OCXO is warmed rapidly. Crystal power will start over 3 Watts and drop to approximately 1.5 Watts after three minutes at 25°C.

The nominal power is 12 VDC. Other than 12 VDC operation must be requested at the time of ordering.

7.0 GNSS Function

The receiver needs to be able to see at least four satellite vehicles (SVs) to obtain an accurate 3-D position fix. When travelling in a valley or built-up area, or under heavy tree cover, you will experience difficulty acquiring and maintaining a coherent satellite lock. Complete satellite lock may be lost or only enough satellites (3) tracked to be able to compute a 2-D position fix, or a poor 3-D fix due to insufficient satellite geometry (i.e. poor DOP). Inside a building or beneath a bridge, it may not be possible to update a position fix. The receiver can operate in 2-D mode if it goes down to seeing only three satellites by assuming its height remains constant. But this assumption can lead to very large errors, especially when a change in height does occur. A 2-D position fix is not considered a good or accurate fix; it is simply "better than nothing".

The receiver's antenna must have a clear view of the sky to acquire satellite lock. Remember, it is the location of the antenna that will be given as the position fix. If the antenna is

Page #:	15 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

mounted on a vehicle, survey pole or backpack, allowance for this must be made when using the solution.

To measure the range from the satellite to the receiver, two criteria are required: signal transmission time and signal reception time. All GNSS satellites have several atomic clocks that keep precise time and are used to time-tag the message (i.e. code the transmission time onto the signal) and to control the transmission sequence of the coded signal. The receiver has an internal clock to precisely identify the arrival time of the signal. Transit speed of the signal is a known constant (the speed of light), therefore: time x speed of light = distance.

Once the receiver calculates the range to a satellite, it knows that it lies somewhere on an imaginary sphere whose radius is equal to this range. If a second satellite is then found, a second sphere can again be calculated from this range information. The receiver will now know that it lies somewhere on the circle of points produced where these two spheres intersect.

When a third satellite is detected and a range determined, a third sphere intersects the area formed by the other two. This intersection occurs at just two points. A fourth satellite is then used to synchronize the receiver clock to the satellite clocks.

In practice, just four satellite measurements are sufficient for the receiver to determine a position, as one of the two points will be totally unreasonable (possibly many kilometers out into space). This assumes the satellite and receiver timing to be identical. In reality, when the receiver compares the incoming signal with its own internal copy of the code and clock, the two will no longer be synchronized. Timing error in the satellite clocks, the receiver, and other anomalies, mean that the measurement of the signal transit time is in error. This, effectively, is a constant for all satellites since each measurement is made simultaneously on parallel tracking channels. Because of this, the resulting ranges calculated are known as "pseudo-ranges".

Page #:	16 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

To overcome these errors, the receiver then matches or "skews" its own code to become synchronous with the satellite signal. This is repeated for all satellites in turn, thus measuring the relative transit times of individual signals. By accurately knowing all satellite positions, and measuring the signal transit times, the user's position can be accurately determined.

This LED illuminates green when the unit is locked to the GNSS system. If the LED is flashing green, the unit is operating on the OCXO and is attempting to gain GNSS Lock.

The GNSS lock status is also on the RS232 connector.

If the GNSS indicator remains flashing green for an extended period of time, it could be an indication of an antenna, cabling or unit malfunction. Confirm the antenna is still connected and has not become obstructed from a clear view of the sky. To check the unit, an alternate antenna can be tried in order to isolate the malfunction. For further support, please contact the factory at 866-313-9401.

There is free software that can be downloaded from www.synreference.com that will allow baud rate changes, cable compensation and other features (see screen shots).

Page #:	17 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

8.0 Programming Guide (STATUS Port)

The NR4600-OG can accept user commands which will provide particular fault detection performance which may be customized by the user, and saved in non-volatile flash memory.

If the user makes several changes which are intended to be kept between power off cycles, the command "\$SAVEFLASH<CR><LF>" will update flash to reflect all current settings.

Table 1 shows a complete list of input commands and descriptions. As a general rule, a command can be input without "=" or additional value, and the unit will respond with the current setting's value. If the input is not understood, the microcontroller will return the value "\$?<CR><LF>"

NOTE: All commands should be followed by <cr><lf>.

A checksum can be added to all input commands, and the requirement for a checksum can be turned on. The checksum method is the two-hexadecimal character representation of an XOR of all characters in the sentence between, but not including, the \$ and the * character.

Example: \$BAUDNV=38400*08

Page #: 18 of 29 www.novuspower.com	
-------------------------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

8.1 Status Commands

Setting	Command	Response	Description
STATUS PORT BAUD RATE	\$BAUDNV	\$BAUDNV= <current baud<="" td=""><td>Query Baud Rate on Status Port RS232.PORT (Default = 38400)</td></current>	Query Baud Rate on Status Port RS232.PORT (Default = 38400)
	\$BAUDNV=38400	Rate>	Assign Baud rate to Status Port RS232 Input. (4800, 9600, 19200, 38400, 57600, or 115200)
	\$PTSF		
POWER SUPPLY FAULT THRESHOLD FACTOR	\$PTSF=0.15	\$PTSF= <current power="" supply<br="">Fault threshold factor (from 0.01 to 0.99)></current>	Query or set the ratio at which the power supply monitor reports a fault. For example, if the PTSF is set to "0.15", the power supply Fault Byte will report an error if the measured value exceeds ±15% of its target value.
	\$THR		Query or set the absolute voltage at which the
CHANNEL FAULT LOW THRESHOLD VALUE (V)	OW THRESHOLD STUD 0.4 Threshold (from 0.02) to	\$THR= <current channel="" fault<br="">Threshold (from 0.02V to 3V)></current>	Channel monitor reports a fault. For example, if the THR is set to "0.4", the Channel Fault Byte will report an error if the measured Vrms is lower than 0.4V.
NVS1 OUTPUT	\$NVS1	\$NVS1= <current output<br="" rmc="">frequency></current>	Query NVS1 String output Frequency. (Default = 1)
NV31 OUTFOT	\$NVS1=1		Change NVS1 String output Frequency in seconds. (0-60)
NVS2 OUTPUT	\$NVS2	\$NVS2= <current output<br="" rmc="">frequency></current>	Query NVS2 String output Frequency. (Default = 1)
	\$NVS2=1		Change NVS2 String output Frequency in seconds. (0-60)
NVS3 OUTPUT	\$NVS3	\$NVS3= <current output<br="" rmc="">frequency></current>	Query NVS3 String output Frequency. (Default = 1)
	\$NVS3=1		Change NVS3 String output Frequency in seconds. (0-60)
REQUIRE	\$CSUM		Query or set mandatory checksum on all
CHECKSUM	\$CSUM=1	\$CSUM= <current csum=""></current>	incoming STATUS port communication. 1 = Enabled, 0 = Disabled. Default = 0.
ALL STRINGS OUTPUT	\$ALL=1	\$ALL=1	Change ALL String output Frequencies in seconds. (0-60). Note this is a convenient way to set all string frequencies at once, usually back to 1Hz. Setting ALL=0 will shut off all STATUS string output. Any other ALL setting will also affect all STATUS strings at once.

Page #:	19 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

Setting	Command	Response	Description
	\$STAT <n></n>	<\$GPNVS,1>	Query NVS <n> String. Useful for status output on demand when user does not require regular string output.</n>
STATUS OUTPUT	\$STAT1		Outputs current \$GPNVS,1 string on demand.
	\$STAT2	<\$GPNVS,2>	Outputs current \$GPNVS,2 string on demand.
	\$STAT3	<\$GPNVS,3>	Outputs current \$GPNVS,3 string on demand.
SAVE ALL VALUES TO FLASH MEMORY	\$SAVEFLASH	\$SAVED. \$FLASH SAVE FAILED.	This command will translate all current variables to flash string and write. Data is then read back for verification, and result reported.
RESET ALL TO DEFAULT	\$RESETALL	\$RESET FLASH VARIABLES.	Resets all user settings to default values and overwrites flash memory with defaults.
INVALID INPUT		\$?	Command not recognized.
ID	\$IDN?	NOVUS,PCB <nnn><a>,<n.n></n.n></nnn>	PCB Revision Number, Software Revision Number

Table 1 Status Commands

Page #:	20 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

8.2 Status String (\$GPNVS,1) Fault Bytes

\$GPNVS	1	hhmmss	mmddyy	Α	nn	0x00	0x00	0x00	*	XX
1	2	3	4	5	6	7	8	9		10

#	Description	Range
1.	Identifier	\$GPNVS
2.	String ID	1
3.	Time (UTC)	hhmmss
4.	Date	mmddyy
5.	GPS Lock (Valid)	"A" = Valid, "V" = Not Valid
6.	# of Sats in View	Greater of GPS or GNSS count
7.	Channel Fault Byte	0x00 to 0x3F (Hex OR'd value)
8.	Power Supply Fault Byte	0x00 to 0x1F (Hex OR'd value)
9.	Error Message Byte	0x00 to 0x0F (Hex OR'd value)
10	. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,1,233518,092516,A,10,0x00,0x00,0x00*62

Time: 23:35:18; Sep. 25, 2016, GPS locked; 10 Satellites in view; No channel

faults; No power supply faults; No error messages.

Page #:	21 of 29	www.novuspower.com	

Users manual	NR4400-GNSS		
Revision #:	F		
Date:	07142020		

8.3 Status String (\$GPNVS,2) Channel Values

\$GPNVS	1	hhmmss	mmddyy	n.nn	n.nn	n.nn	n.nn	n.nn	n.nn	*	XX
1	2	3	4	5	6	7	8	9	10		11

<u>#</u> Description	Range
1. Identifier	\$GPNVS
2. String ID	2
3. Time (UTC)	hhmmss
4. Date	mmddyy
5. Channel 1 Vrms	0.00 to 6.60 [V]
6. Channel 2 Vrms	0.00 to 6.60 [V]
7. Channel 3 Vrms	0.00 to 6.60 [V]
8. Channel 4 Vrms	0.00 to 6.60 [V]
9. Channel 5 Vrms	0.00 to 6.60 [V]
10. Channel 6 Vrms	0.00 to 6.60 [V]
11. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:

\$GPNVS,2,233518,092516,0.99,1.01,1.06,0.97,1.52,1.54*4E

Page #:	22 of 29	www.novuspower.com	

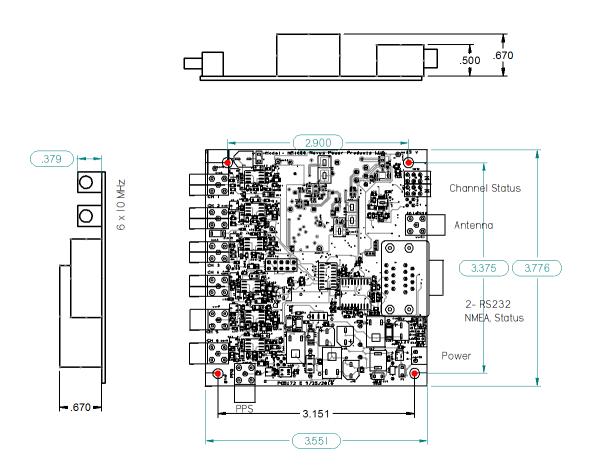
Users manual	NR4400-GNSS		
Revision #:	F		
Date:	07142020		

8.4 Status String (\$GPNVS,3) Power Supply Values

\$GPNVS	3	hhmmss	mmddyy	n.nn	n.nn	n.nn	n.nn	n.nn	*	XX
1	2	3	4	5	6	7	8	9		10

<u>#</u>	<u>Description</u>	Range
1.	Identifier	\$GPNVS
2.	String ID	2
3.	Time (UTC)	hhmmss
4.	Date	mmddyy
5.	-5Vdc Power Supply	-30.0 to 30.0 [V]
6.	+5Vdc Power Supply	-30.0 to 30.0 [V]
7.	10 k Ω Thermistor	0.00 to 3.30 [V]
8.	+5Vdc Power Supply(opt)	-30.0 to 30.0 [V]
9.	OCXO Control Voltage	0.00 to 3.30 [V]
10	. NMEA Checksum	*XX (xor'd value of bytes between \$ and *)

Example:


\$GPNVS,3,233518,092516,-4.84,4.93,1.45,4.90,2.12*42

Page #:	23 of 29	www.novuspower.com	
·g			

User	s manual	NR4400-GNSS
Revi	sion #:	F
Date	:	07142020

9.0 Mechanical

There are four 0.156" pads on the board intended for mechanical mounting. They are shown in red above.

Page #:	24 of 29	www.novuspower.com		
---------	----------	--------------------	--	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

10.0 Performance

10.1 Technical Specifications

10MHz Sine	1 ±0.1 Vrms, 50 Ohms.
Harmonics	Less than -30dBc
First Year Frequency Stability	± 50 ppb unlocked
Temp Stability	±10 ppb unlocked
Daily Aging OCXO	±5 ppb/day unlocked
Yearly Aging	±50 ppb (without GNSS lock)
Accuracy Auto-Cal (24 hrs.)	10 MHz<5ppb (does not include crystal drift if not GNSS locked)
Receiver Sensitivity	-155dBm
Remote interface &	
control	
Protocol	RS232 NMEA-0183
Connector	DB-9
Location	Rear panel
Protocol	Bit plus stop
Standard Baud Rates	Selectable 4800, 9600, 19200, 38400, 57600 or 115200 bps
GNSS receiver	GPS L1 C/A, GLONASS L1OF, QZSS L1 C/A, SBAS L1 C/A
	(Ready): Galileo E1B/E1C, QZSS L1S
Channels	26 channels (GPS, GLONASS, QZSS, SBAS)
Sensitivity	
GPS	Tracking: -161 dBm
	Hot Start: -161 dBm
	Warm Start: -147 dBm
	Cold Start: -147 dBm
	Reacquisition: -161 dBm
	readquisition. For abin
GLONASS	
	Tracking: -157 dBm
	Hot Start: -157 dBm
	Warm Start: -143 dBm
	Cold Start: -143 dBm
	Reacquisition: -157 dBm
	With Novus recommended antenna
	VVIII 140 VAS TOCOMMICINOS AMERICAS

Page #:	25 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual		NR4400-GNSS	
	Revision #:	F	
	Date:	07142020	

Antenna with LNA	
Antenna power	3.5 Vdc, < 35 ma (on center conductor) (factory configurable to 5 Vdc)
Frequency	1574-1607 MHz
Nominal Gain	2 dBic
Amplifier gain	26 dB
Noise Figure	< 2.0 dB
Out of Band rejection	Fo±50MHz=60 dBc, Fo±60 MHz
PPS	20ns RMS accuracy, 3.3 volt logic
GPS Lock	LED on board and status via serial port
Alert	LED on board and status via serial port
Power Requirements	Nominal 12 VDC (10-18) options cover -60 to +60 VDC
Connectors	6-SMA 10 MHz output, sine wave
	SMA PPS CMOS
	SMA Antenna connector (3.5 VDC < 20 ma)
Locked Accuracy	< 3E-11 @ 200 sec
Options:	

10.2 Environmental and Mechanical

Operating Temperature	0 to 50°C non-condensing (extended temperature range available)
Storage Temperature	-40 to 85°C
Width	3.7"
Depth	3.5"
Height	~1.5"
Weight	~5 oz.

This document is copyright © July 14, 2020 Novus Power Products LLC. All rights reserved. This document is provided for information purposes only; contents are subject to change without notice. It is not warranted to be error-free, nor subject to any other warranties or conditions including implied warranties and conditions of merchantability or fitness for a particular purpose.

11.0 LIMITED HARDWARE WARRANTY

Novus Power Products (hereinafter Novus) warrants its products to the original end user ("original purchaser") and warranty is not transferable. Novus guarantees that the NOVUS hardware products that

Page #:	26 of 29	www.novuspower.com	
---------	----------	--------------------	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

you have purchased from NOVUS are free from defects in materials or workmanship under normal use during the LIMITED WARRANTY PERIOD. The LIMITED WARRANTY PERIOD starts on the date of shipment and for the period of 1 (one) year to be free from defects caused by faulty materials or poor workmanship, provided:

- (a) NOVUS is notified in writing by Buyer of such defect prior to the expiration of the warranty period, and (b) after receiving return authorization –RMA- from NOVUS, the defective item is returned with transportation prepaid to NOVUS, Independence, Missouri, with transportation charges prepaid by Buyer ...see RMA policy in Terms and conditions, and
- (c) NOVUSs' examination of such unit shall disclose to its satisfaction that such defect(s) exist and have not been caused by misuse, neglect, improper installation, improper storage, unauthorized modifications. inadequate maintenance, operation outside the environmental specifications for the product, repair alteration, or accident. NOVUS assumes no risk or liability for results of the use of products purchased from it, including but without limiting the generality of the foregoing: (1) the use in combination with any electrical or electronic components, circuits, systems, assemblies or any other materials or substances; (2) unsuitability of any product for use in any circuit or assembly. Removal or tampering with tamper-proof label on merchandise will void warranty coverage unless with the written authorization from NOVUS (d) an evaluation fee will be charged to Buyer to cover inspection and testing costs for any item returned by Buyer under this paragraph which is found to be within specifications and/or otherwise not the responsibility of NOVUS under the terms and conditions of this paragraph or any other part of this Agreement.. Your dated sales or delivery receipt is your proof of the purchase date. You may be required to provide proof of purchase as a condition of receiving warranty service. You are entitled to hardware warranty service according to the terms and conditions of this document if a repair to your NOVUS product is required during the limited warranty period. Our obligation at NOVUS is limited to repair or replace products which prove to be defective.

Should Novus be unable to repair or replace the product within a reasonable amount of time, the customer's alternate remedy shall be a refund of the purchase price upon return of the product to Novus. The liability of NOVUS under this warranty is limited to replacing, repairing or issuing a credit, at its option, for any such item returned by Buyer under the terms of this warranty.

EXCLUSIONS: The above warranty shall not apply to defects resulting from improper or inadequate maintenance by the customer, customer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product or improper site preparation and maintenance (if applicable). For probes, cables, antennas and accessories, the warranty period is 90 (ninety) days.

PRODUCT SPECIFICATIONS: Published specifications whether contained herein or in any other materials or documents distributed to Buyer by Novus do not become final or binding on NOVUS until approved by NOVUS. NOVUS expressly reserves the right to change or modify specifications at any time without prior notice.

WARRANTY LIMITATIONS: NOVUS MAKES NO OTHER WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS PRODUCT. NOVUS SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN ALL CIRCUMSTANCES NOVUS' MAXIMUM LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE PRODUCTS SOLD. NOVUS SHALL NOT, UNDER ANY CIRCUMSTANCES BE LIABLE UPON A CLAIM OR ACTION IN CONTRACT, TORT, INDEMNITY OR CONTRIBUTION OR OTHER CLAIMS RELATING TO THE PRODUCTS IT SELLS WHICH EXCEEDS THIS LIABILITY LIMIT. NOVUS SHALL NOT BE LIABLE FOR THIRD PARTY CLAIMS FOR DAMAGES AGAINST THE CUSTOMER, OR FOR MALFUNCTION, DELAYS, INTERRUPTION OF SERVICE, LOSS OF BUSINESS, LOSS OR DAMAGE TO

Page #:	27 of 29	www.novuspower.com		
---------	----------	--------------------	--	--

Users manual	NR4400-GNSS
Revision #:	F
Date:	07142020

EXEMPLARY DAMAGES, WHETHER OR NOT NOVUS HAS BEEN MADE AWARE OF THE POSSIBILITY OF SUCH CLAIMS OR DAMAGES.

LIMITATION OF REMEDIES: REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL NOVUS BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA OR BUSINESS INFORMATION (OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE HARDWARE SUPPLIED THEREWITH EVEN IF NOVUS OR ANYONE ELSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

EXCLUSIVE REMEDIES: THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMERS' SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL NOVUS BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONNSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

12.0 Appendix: GPS/GNSS Command Reference

Page #:	28 of 29	www.novuspower.com		
---------	----------	--------------------	--	--

Users manual	NR4400-GNSS	
Revision #:	F	
Date:	07142020	

See Attached.

Page #:	29 of 29	www.novuspower.com	
raye #.	29 01 29	www.novuspowen.com	

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Users Manual Appendix A

Appendix A

GPS/GNSS Receiver Communications Specification NMEA-0183

All information provided herein is the proprietary property of Novus Power Products L.L.C. The information included may be reproduced without the permission of Novus Power Products L.L.C. without prior approval for purpose of operating the equipment.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Table of Contents:

1	. COMMUNICATION SPECIFICATION	4
2	SERIAL DATA OUTPUT TIMING ^4	5
3	NMEA SENTENCE FORMAT	6
4	PROPRIETARY SENTENCE FORMAT:	7
5	STANDARD NMEA OUTPUT SENTENCES	8
	GGA — GLOBAL POSITIONING SYSTEM FIX DATA FORMAT:	9
	GLL — GEOGRAPHIC POSITION - LATITUDE/LONGITUDE 46	
	GNS — GNSS FIX DATA FORMAT:	11
	GSA – GNSS DOP AND ACTIVE SATELLITES	12
	GSV – GNSS SATELLITES IN VIEW 4	
	RMC − RECOMMENDED MINIMUM NAVIGATION INFORMATION 6	15
	VTG — COURSE OVER GROUND AND GROUND SPEED FORMAT:	
	ZDA — TIME & DATE FORMAT:	17
6	PROPRIETARY NMEA INPUT SENTENCES	
	GNSS — SATELLITE SYSTEM CONFIGURATION ^4^8	19
	FIXMASK — SETTING OF POSITIONING AND SATELLITE MASK 4	20
	PPS — SETTING OF PPS (PULSE PER SECOND) △4 FORMAT:	22
	RESTART - RESTART COMMAND A FORMAT:	24
	TIME — SETTING OF TIME INFORMATION △4	25
	TIMEZONE — LOCAL ZONE TIME ^4	26
	SURVEY - Position Mode 41 Format:	27
	FREQ — SETTING OF GCLK FREQUENCY \$\triangle 2 \triangle 7 FORMAT:	31
	DEFLS — SETTING OF DEFAULT LEAP SECOND ^4 ^6 FORMAT:	32
	TIMEALIGN — SETTING OF TIME ALIGNMENT ^4 FORMAT:	33
	RESTRICTION:	
	FLASHBACKUP — SETTING OF BACKUP IN FLASH 4 FORMAT:	35
	CROUT — SETTING OF CR OUTPUT FORMAT:	36
7	CFG — SETTING OF APPLICATION SOFTWARE	37
	NMEAOUT – STANDARD NMEA OUTPUT 49	37
	UART1 – Serial Communication Port Format:	37
	SYS — PVT System	39
	GPIO – GENERAL PURPOSE INPUT/OUTPUT FORMAT	39

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

8	PROPRIETARY NMEA OUTPUT SENTENCES	40
	ACK — OUTPUT THE COMMAND RECEPTION CHECK FORMAT:	40
9	CR — ERIDE GNSS CORE LIBRARY INTERFACE	41
	CRW(TPS1) – OUTPUT TIME TRANSFER INFO PER SECOND (DATE AND LEAP SECOND) 445 FORMAT:	41
	CRX(TPS2) — OUTPUT TIME TRANSFER INFO PER SECOND (PPS) 4 FORMAT:	44
	CRY(TPS3) — OUTPUT TIME TRANSFER INFO PER SECOND (SURVEY & TRAIM) FORMAT:	46
	CRZ (TPS4) — OUTPUT TIME TRANSFER INFO PER SECOND (FREQUENCY) △3 FORMAT:	
	CRM – MEASUREMENT DATA OF GPS	50
	CRN – Navigation Data	51
	SYS – Answer of PVT System	52
	GPIO- GENERAL PURPOSE INPUT/OUTPUT FORMAT:	52
	FIXSESSION- Fix Session ^1 Format:	53
	ANTSEL- Antenna selecting ^1 Format:	53
	BBRAM - BATTERY BACKUP RANDOM ACCESS MEMORY \$\triangle 1 \text{ FORMAT:}	54
	MSG – EVENT DRIVEN MESSAGE A1 FORMAT:	54
10	0 BACKUP OF THE RECEIVER PARAMETERS (FOR BBRAM) △4	55

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

1 Communication Specification

Signal Lines used: TXD, RXD Flow Control: None

System: Full Duplex Asynchronous

Speed: Configurable, Default 38400 bps (*1)

Start Bit: 1 bit
Data Length: 8 bits
Stop Bit: 1 bit
Parity Bit: None
Data Output Interval: 1 second

Character Codes used: NMEA-0183 Ver.4.10 data based

ASCII code (*2) Protocol: Input data

NMEA Standard sentence NMEA Proprietary sentence

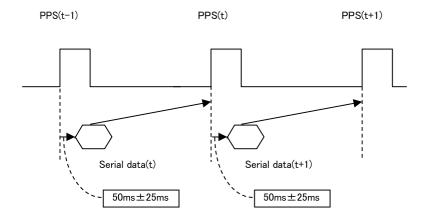
Output data

NMEA Standard sentence NMEA Proprietary sentence

Note 1: Communication speed can be changed into 4800, 9600, 19200, 38400, 57600 or 115200 bps.

Please refer to section "UART1 – Serial Communication Port" for how to configure the communication speed. In case of using low baud rate, please adjust size of output sentence by NMEAOUT command and CROUT command to output all sentence within one second.

Note 2: "NMEA 0183 STANDARD FOR INTERFACING MARINE ELECTRONIC DEVICES Version 4.10" (NATIONAL MARINE ELECTRONICS ASSOCIATION, June, 2012)



Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

2 Serial data output timing 4

The output timing of serial data is synchronous with PPS output timing. Serial data is begun to output in the 25ms to 75ms range after PPS is output.

The time of serial data indicates next PPS output timing.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

NMEA Sentence Format

13.1 Standard Sentence

Format:

\$ <address field=""></address>	,	<data field=""></data>	 * <checksum field=""></checksum>	<cr></cr>	<lf></lf>
5 bytes					

Field	Description
\$	Start-of Sentence marker
<address field=""></address>	5-byte fixed length. First 2 bytes represent a talker ID, and the remaining 3 bytes do a sentence formatter.
	All output sentences must begin with a "\$" followed by a TalkerID. The relevant Talker IDs are GP for GPS, GN for GNSS, GL for GLONASS and GA for Galileo.
	For the sentences received from external equipment, the GT-87 accepts any talker ID. Talker ID "XX" found on the succeeding pages is a wildcard meaning "any valid talker ID".
<data field=""></data>	Variable or fixed-length fields preceded by delimiter ","(comma).
	Comma(s) are required even when valid field data are not available i.e. null fields. Ex. ",,,,,"
	In a numeric field with fixed field length, fill unused leading digits with zeroes.
* <checksum field=""></checksum>	8 bits data between "\$" and "*" (excluding "\$" and "*") are XORed, and the resultant value is converted to 2bytes of hexadecimal letters. Note that two hexadecimal letters must be preceded by "*", and delimiter "," is not required before * <checksum>.</checksum>
	All output sentences have checksum.
	For input sentences, the resultant value is checked and if it is not correct, the sentence is treated invalid.
<cr><lf></lf></cr>	End-of-Sentence marker

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

4 Proprietary Sentence Format:

9	S F	Р	<maker id=""></maker>	<sentence type=""></sentence>	,	<data field=""></data>	 * <checksum field=""></checksum>	<cr></cr>	<lf></lf>
					,			_	

3 bytes 3 bytes

Field	Description		
\$	Start-of-Sentence marker		
Р	Proprietary sentence identifier		
<maker id=""></maker>	3-byte fixed length.		
	GT-87's maker ID is "ERD" meaning eRide.		
<sentence type=""></sentence>	Indicates the type of sentence.		
<data field=""></data>	Variable or fixed-length fields preceded by delimiter		
	","(comma).		
	(Layout is maker-definable.)		
<checksum field=""></checksum>	8 bits data between "\$" and "*"(excluding "\$" and "*") are XORed, and the resultant value is converted to 2 bytes of hexadecimal letters. Note that two hexadecimal letters must be preceded by "*", and delimiter "," is not required before * <checksum>.</checksum>		
	All output sentences have checksum.		
	For input sentences, the resultant value is checked and if it is		
	not correct, the sentence is treated invalid.		
<cr><lf></lf></cr>	End-of-Sentence marker		

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

5 Standard NMEA Output Sentences

The receiver supports eight standard NMEA output sentences (GGA, GLL, GNS, GSA, GSV, RMC, VTG and ZDA) per NMEA standard 0183 Version 4.10 (June, 2012).

By default, the RMC, GNS, GSA, ZDA, GSV and TPS sentences will be output every second. The sentences can be independently enabled and disabled using the \$PERDCFG,NMEAOUT and/or \$PERDAPI,CROUT command described later in this document, as well as use differing transmission rates.

The NMEA sentence descriptions in this sentence are for reference only. The sentence formats are defined exclusively by the copyrighted document from NMEA.

e*Ride* does populate all the fields described in the NMEA specification. Uncalculated fields are indicated as "Not Supported".

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GGA - Global Positioning System Fix Data Format:

\$XXGGA	,	hhr	nmss	.sss	,	ddm	m.mm	mm	,	а	, (dddm	ım.r	nmmm	,	а	,	х	,	XX	,
			1				2			3			4			5		6		7	
[;	к. х	,	x.x	,	М	,	x.x	,	М	,	X	xx	,	xxx	*	hh	<(CR>	<	<lf></lf>	
	8		9	•	10		11		12		1	L3		14			•				-

#.	Description	Range
1.	UTC	
	"hh": hour	00 - 23
	"mm": minute	00 - 59
	"ss.sss": second	00.000 - 59.999
2-3.	Latitude	
	"dd": degree	00 - 90
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": North/South	N or S
4-5.	Longitude	
	"ddd": degree	000 - 180
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": East/West	E or W
6.	GPS Quality Indication	0 - 2
		"0": Fix not available or invalid
		"1": Valid fix
		"2": DGPS positioning
7.	Number of satellites used for positioning	
8.	Horizontal dilution of precision (HDOP)	0.0-50.0
	Note: A null field is output while p	· ·
9.	Altitude above/below mean sea-level (geo	id)
10.	Unit of Altitude, meter	М
11.	Geoidal height	
12.	Unit of Geoidal height	M
13.	Age of differential GPS data	n/a
14.	Differential reference station ID	n/a

Example:

[*1] GPS, SBAS, QZSS only. Galileo and GLONASS are not counted. Upper limit is 12.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GLL - Geographic Position - Latitude/Longitude 46

Format:

\$XXGLL	, ddmm.mmmm	,	а	, dddmm.mmmm	,	а	, hhmmss.sss	,	а	,	а	*hh	<cr></cr>	<lf></lf>
	1		2	3		4	5		6		7			

# 1-2.	Description Latitude	Range
1 2.	"dd": degree "mm.mmmm": minute	00 - 90 00.0000 - 59.9999
3-4.	"a": North/South	N or S
J- 1 .	Longitude "ddd": degree	000 - 180
_	"mm.mmmm": minute "a": East/West	00.0000 - 59.9999 E or W
5.	UTC "hh": hour	00 - 23
	"mm": minute "ss.sss": second	00 - 59 00.000 - 59.999
6.	Status △6	A or V "A": Data Valid
7	Desition Cystem Made Indication	"V": Data Invalid
7.	Position System Mode Indication	A, D or N "A": Autonomous
		"D": Differential "N": Data Invalid

Example:

\$GPGLL,3442.8146,N,13520.1090,E,025411.516,A,A*5F

34 deg 42.8146 min N 135 deg 20.1090 min E

UTC: 02:54:11.516 Mode: Data Valid

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GNS - GNSS Fix Data Format:

\$XXGN	ıs ,	hhi	mmss	.sss	,	ddmn	n.mmmı	n,	a	,	dd	dmm.m	mmm	,	а	,	CC	,	xx	,
			1				2		3			4			5		6		7	
	X.X	,	x.x	,	x.x	. ,	х	,	х		,	х	*hh	<	CR:	>	<lf></lf>			
	8		9		10	•	11		12			13								

ш.	Description	Danna
#. 1.	Description UTC	Range
1.	"hh": hour	00 - 23
	"mm": minute	00 - 59
	"ss.sss": second	00.000 - 59.999
2-3.	Latitude	
	"dd": degree	00 - 90
	"mm.mmmm": minute	00.0000 - 59.9999
	"a": North/South	N or S
4-5.	Longitude	
	"ddd": degree	000 - 180
	"mm.mmmm": minute	00.0000 - 59.9999
_	"a": East/West	E or W
6.	Mode Indicator for each satellite system (SPS, GLONASS, Gailleo) "A": Autonomous
		"D": Differential
		"N": Data Invalid
7.	Number of satellites used for positioning	
7. 8.	Horizontal dilution of precision (HDOP)	
•	Note: A null field is output while	
9.	Altitude above/below mean sea-level (geo	•
10.	Geoidal height	,
11.	Age of differential GPS data	n/a
12.	Differential reference station ID	n/a
13.	Navigation Status Indicator	S, C, U or V
		"S": Safe
		"C": Caution
		"U": Unsafe
		"V": Not Valid

Example:

Number of satellites: 22 satellites HDOP: 0.5

Altitude: 40.6 meters high Geoidal height: 36.7 meters high

Navigation Status Indicator: Not Valid

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GSA – GNSS DOP and Active Satellites 4

Format:

_																										
	\$XXGSA	,	а	,	а	,	xx	,	xx	,	xx	,	:	,	xx	,	x.x	,	x.x	,	x.x	,	h	*hh	<cr></cr>	<lf></lf>
			1		2		3		4		5		6-13		14		15		16		17		18			

#	Description	Range
1.	Operational mode	M or A
		"M": 2D/3D fixed mode
		"A": 2D/3D Auto-switching mode
2.	Mode	1 - 3
		"1": No fix
		"2": 2D fix
		"3": 3D fix
3-14.	Satellite Numbers used for positioning	01 - 99
	Note: A null field is output unless a satelli	te is available.
15.	PDOP	0.0 - 50.0
	Note: A null field is output unless 3D-posi	tioning is performed.
16.	HDOP	0.0 - 50.0
	Note: A null field is output while positioning	ng is interrupted.
17.	VDOP	0.0 - 50.0
	Note: A null field is output unless 3D-posi	tioning is performed.
18.	GNSS System ID	n/a

Example:

\$GNGSA,A,3,09,15,26,05,24,21,08,02,29,28,18,10,0.8,0.5,0.5,1*33 \$GNGSA,A,3,79,69,68,84,85,80,70,83,,,,,0.8,0.5,0.5,2*30

2D/3D Auto-switching mode, 3D fix

Satellite used: 09, 15, 26, 05, 24, 21, 08, 02, 29, 28, 10, 79, 69, 68, 84, 85, 80, 70, 83

PDOP: 0.8 HDOP: 0.5 VDOP: 1.5

Notes: △4

- To adds extra fields to the GPGSA NMEA string to show more than 12 satellites used in the fix, please input "\$PERDAPI,EXTENDGSA,num*hh<CR><LF>". num is Number of fields for satellites used in the fix. Acceptable values are: 12-16. Default num is 12. By creating more fields for satellites used in the fix, the PDOP/HDOP/VDOP values shift by num12 fields.
- Satellite number means the follow.

Satellite number from 01 to 32 indicates GPS (01 to 32)

Satellite number from 33 to 51 indicates SBAS (120 to 138)

Satellite number from 65 to 92 indicates GLONASS (slot 01 to slot 28)

Satellite number from 93 to 99 indicates QZSS (193 to 199)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

GSV - GNSS Satellites in View 4

F	^	r	m	12	٠	•
•	u			ıa	ı	

<u> FOI II</u>	ıati																							
\$XX	GSV	,	х	,	X	,	х	,	XX	,	xx	,	xxx	,	xx	,	xx	,	XX	,	xxx	,	xx	,
			1		2		3		4		5		6		7		8		9		10		11	
XX	,	XX	,	XX	κχ	,	XX	,	X	х	,	XX	,	XXX	,	X	x		h	*hh	<(CR>	<lf< th=""><th>=></th></lf<>	=>
12		13		1	4		15		10	6	•	17		18		19	9	2	20					

#	Description	Range
1.	Total number of messages	1 - 4
2.	Number of messages	1 - 4
3.	Number of satellites in line-of-sight	00 - 14
4.	1 st Sat. ID number	01 - 99
5.	1 st Sat. elevation angle (degree)	00 - 90
6.	1 st Sat. azimuth angle (degree)	000 - 359
7.	1 st Sat. SNR (Signal/Noise Ratio) (dB)	00 - 99
8-11.	2 nd Sat. Details	
12-15.	3 rd Sat. Details	
16-19.	4 th Sat. Details	
20.	Signal ID	

Example:

\$GPGSV,4,1,14,15,67,319,52,09,63,068,53,26,45,039,50,05,44,104,49,1*6E \$GPGSV,4,2,14,24,42,196,47,21,34,302,46,18,12,305,43,28,11,067,41,1*68 \$GPGSV,4,3,14,08,07,035,38,29,04,237,39,02,02,161,40,50,47,163,44,1*67 \$GPGSV,4,4,14,42,48,171,44,93,65,191,48,,,,,,1*60 \$GLGSV,3,1,09,79,66,099,50,69,55,019,53,80,33,176,46,68,28,088,45,1*76 \$GLGSV,3,2,09,70,25,315,46,78,24,031,42,85,18,293,44,84,16,246,41,1*7A \$GLGSV,3,3,09,86,02,338,,,,,,,,,,,,,1*45 Message number

Total number of message

<checksum><CR><LF> is output right after the last satellite data output.

Notes: △4

- In this sentence, a maximum of four satellite details is indicated per each output. Five or more satellite details are output in the 2nd or 3rd messages. When there is an item which is not fixed in the satellite details, a null field is output. When there are only one to four satellite details, <checksum><CR><LF> is issued immediately after Sat. SV#, Sat. elevation angle, Sat. azimuth angle and SNR.
- Satellite number means the follow.

Satellite number from 01 to 32 indicates GPS (01 to 32)

Satellite number from 33 to 51 indicates SBAS (120 to 138)

Satellite number from 65 to 92 indicates GLONASS (slot 01 to slot 28)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Satellite number from 93 to 99 indicates QZSS (193 to 199)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

RMC - Recommended Minimum Navigation Information 46

Format:

r <u>oi illat</u>	<u> </u>																			
\$XXRM	1C ,	hhr	nmss.sss	,	а	,	ddmm.mmmm			, 6	а	,	dddmm.mmmm			а	,	x.x	,	
	1				2			3			4	4		5			6		7	
	x.x	,	ddmmyy	,	X.	.x	,	а	,	а	,		a	*hh	<cr></cr>	<l< th=""><th>.F></th><th></th><th></th><th></th></l<>	.F>			

12

13

Description Range

8

UTC 1.

"hh": hour 00 - 23"mm": minute 00 - 59 "ss.sss": second 00.000 - 59.999

11

10

2. Status △6

> "A": Data valid "V": Data not valid

A or V

3-4. Latitude

> "dd": degree 00 - 90

"mm.mmmm": minute 00.0000 - 59.9999 N or S

"a": North/South

5-6. Longitude

> "ddd": degree 000 - 180

"mm.mmmm": minute 00.0000 - 59.9999 E or W

"a": East/West

7. Speed (kts)

8. True Course (degree)

9. Date

> "dd": date "mm": month

"yy": last two digits of the year

10. Magnetic declination

Note: A null field is output unless magnetic declination information is available.

Correction direction of magnetic declination 11.

Note: A null field is output unless magnetic declination information is available.

12. Positioning System Mode Indication A, D or N "A": Autonomous

"D": Differential "N": Data Invalid

13. **Navigation Status Indicator**

S, C, U or V "S": Safe "C": Caution "U": Unsafe "V": Not Valid

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Example:

\$GNRMC,012344.000,A,3442.8266,N,13520.1233,E,0.00,0.00,191132,,,,D,V*0B UTC: 01:23:44.000 Differential 34 deg 42.8266 min N 135 deg 20.1233 min E

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

VTG - Course Over Ground and Ground Speed Format:

\$XXVTG Τ Μ *hh <CR> <LF> X.X X.X X.X Ν X.X K a 5 3 6 7 1 2 4 8 9

Τ

Description Range

1-2. True Course (degree)

"T" (meaning TRUE)

3-4. Magnetic Direction

"M" (meaning Magnetic Direction) M

Note: A null field is output unless magnetic direction information is available.

5-6. Speed (kts)

"N" (meaning knot) N

7-8. Speed (km/h)

"K" (meaning km/h)

9. Positioning System Mode Indication A, D or N

"A": Autonomous
"D": Differential
"N": Data Invalid

Example:

\$GNVTG,0.00,T,,M,0.00,N,0.00,K,D*26

True Course: 0.00 degrees Speed: 0.00 kts, 0.00 km/h Mode: Differential

ZDA – Time & Date Format:

\$XXZDA	, hhmmss.sss	,	XX	,	XX	,	xxxx	,	xxx	,	XX	*hh	<cr></cr>	<lf></lf>
	1		2		3		4		5		6			

Description

UTC: Time

"hh": hour 00 - 23 "mm": minute 00 - 59

"ss.sss": second 00.000 - 59.999

UTC: Day of Month
 UTC: Month
 01 - 31
 01 - 12

UTC: Year 1999 - 2099 △3
 Local Zone Hours (+/-) 00 - 23

6. Local Zone Minutes 00 - 59

Example:

\$GPZDA,014811.000,13,09,2013,+00,00*7B UTC: 01:48:11.000 13th September, 2013

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

6 Proprietary NMEA Input Sentences

These sentences are input commands for the protocol of this receiver.

Users manual	Appendix A				
Revision #:	Α				
Date:	07-14-15				

GNSS – Satellite System Configuration 4448

Format:

\$PERDAPI	, GNSS	, talkerID	, gps	, glonass	, galileo	, qzss	, sbas	*hh <cr> <lf< th=""><th>></th></lf<></cr>	>
	1	2	3	4	5	6	7		

Num	Contents	Range	Default	Remark
1	GNSS	-	-	Command Name
2	talkerID	AUTO, LEGACYGP or GN △8	AUTO	AUTO: GLGSV is omitted in case of no glonass. GPGSV is omitted in case of no GPS, SBAS and QZSS. LEGACYGP: GL and GN sentence is omitted. GN: GLGSV is output even if no glonass. GPGSV is output even if no GPS, SBAS and QZSS.
3	gps	0 or 2	2	GPS mode △3
4	glonass	0 or 2	2	Glonass mode △3
5	galileo	0	0	Galileo mode (unimplemented)
6	qzss	0 or 2	2	Qzss mode △3
7	sbas	0, 1 or 2	1	Sbas mode △2

Example:

\$PERDAPI,GNSS,AUTO,2,2,0,2,2*41 Use: GPS, GLONASS, QZSS, SBAS

Mask: Galileo

Notes: △4

- This command controls which Global Navigation Satellite Systems are used by the receiver. The mode can be set to 0 or 2 for each satellite system. User can also set SBAS mode to 1. Mode 0 means to disable the system.

Mode 1 means to enable tracking only (do not use in position fix etc).

Mode 2 means to enable tracking and use the in position fix calculation.

- In GT-87, default setting of SBAS mode is 1, because to use calculation data of SBAS tends to reduce the accuracy of 1PPS. Therefore although GT-87 becomes to differential fix, SBAS is not appeared in GSA sentence in default setting.
- The response which is inserted current value to each field is obtained by receiving an effective command for setting or inputting a command which is omitted the fields after Command Name, that is, \$PERDAPI,GNSS,QUERY*18.
- "Sbas only configuration" and "No tracking configuration" are not accepted.

\$PERDAPI,GNSS,AUTO,0,0,0,0,2*43

\$PERDAPI,GNSS,AUTO,0,0,0,0,1*40

\$PERDAPI,GNSS,AUTO,0,0,0,0,0*41

- Cold restart (time also be cleared) is run when satellite system configuration is changed from/to glonass only fix configuration. In the others configuration, hot restart is run.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

FIXMASK – Setting of Positioning and Satellite Mask 4

Format:

OI III G	••															
\$PER	DAPI	, F	FIXMASK	, n	ode	,	elevma	sk	,	Reserve1	. ,	snrmask	,	Res	erve2	[,
			1		2		3			4		5			6	<u> </u>
	nibit SVs (GPS)	s		oit SVs NASS)	, Pr		oit SVs Galileo)	, P		ibit SVs (OZSS)	, P	rohibit SVs (SBAS)]	*	hh	<cr></cr>	<l< td=""></l<>

GPS)	,	(GLONASS)	(Galileo)	,	(QZSS)	,	(SBAS)]	*hh	<cr></cr>	<lf></lf>
7		8	9		10		11			

Num	Contents	Range	Default	Remark	
1	FIXMASK	-	-	Command Name	
2	mode	USER	-	Fixed Value	
3	elevmask	0 to 90	0	Elevation mask (in degree) Only SVs whose age is within this threshold are used in the position fix calculation.	
4	Reserve1	0	0	Reserve field	
5	snrmask	0 to 99	0	Signal level mask (in dB-Hz) Only SVs above this mask are fixed.	
6	Reserve2	0	0	Reserve field	
7	Prohibit SVs (GPS)	32BIT (HEX)	0	GPS Satellite number mask Each bit represents one SVID. The GPS satellites indicated by this field are not used in the position fix calculation. Lowest order bit means SV=01. Highest order bit means SV=32. △4	
8	Prohibit SVs (GLONASS)	28BIT (HEX)	0	GLONASS Satellite number mask Each bit represents one SVID. The GLONASS satellites indicated by this field are not used in the position fix calculation. Lowest order bit	
9	Prohibit SVs (Galileo)	20BIT (HEX)	0	means SV=65. Highest order bit means SV=92. △4 Galileo Satellite number mask Each bit represents one SVID. This field isunimplemented. △4	
10	Prohibit SVs (QZSS)	7BIT (HEX)	0	QZSS Satellite number mask Each bit represents one SVID. The QZSS satellites indicated by this field are not used in the position fix calculation. Lowest order bit means SV=93. Highest order bit means SV=99. $\triangle 4$	
11	Prohibit SVs (SBAS)	19BIT (HEX)	0	SBAS Satellite number mask Each bit represents one SVID. The SBAS satellites indicated by this field are used in fix. Lowest order bit means SV=33. High order bit means SV=51. \(\triangle 4\)	

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Example:

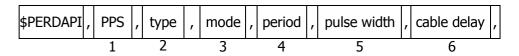
\$PERDAPI,FIXMASK,USER,10,0,37,0,0x92,0x01,0x00,0x00,0x20000*50

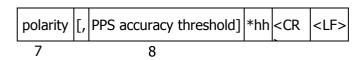
Elevation mask: 10 degrees Signal level mask: 37 dBHz

GPS mask: GPS (BIT2 = SVID 2), GPS (BIT5 = SVID 5) and GPS (BIT9 = SVID 9)

GLONASS mask: GLONASS (BIT1 = SVID 65)

SBAS mask: SBAS (BIT18 = SVID 50)


Notes:


- It is applied not only to First Fix or the time of a positioning return but to all the positioning.
- It is omissible after the 7th field.
- The response which is inserted current value to each field is obtained by receiving an effective command for setting or inputting a command which is omitted the fields after Command Name, that is, \$PERDAPI,MASK,QUERY*50.

Users manual	Appendix A					
Revision #:	Α					
Date:	07-14-15					

PPS – Setting of PPS (Pulse per second) 4 Format:

Num	Contents	Range	Default	Remark
1	PPS	-	-	Command Name
2	type	LEGACY GCLK	LEGACY	PPS type
3	mode	0 to 4	4	PPS mode 0: Always stop 1: Always output 2: Output only during positioning more than one satellite 3: Output only when TRAIM is OK 4: Output only when estimated accuracy is less than estimated accuracy threshold which is 8th field on this command.
4	period	0 to 1	0	PPS output interval 0: 1PPS (A pulse is output per second) 1: PP2S (A pulse is output per two seconds)
5	pulse width	1 to 500	200	PPS pulse width (ms)
6	cable delay	-100000 to 100000	0	PPS cable delay (ns) Plus brings delay PPS. Minus brings forward PPS.
7	polarity	0 to 1	0	PPS polarity (LEGACY PPS is rising edge only) 0: rising edge 1: falling edge
8	PPS accuracy threshold	5 to 9999	1000	PPS estimated accuracy threshold This threshold is used for mode 4. $\triangle 4$

Example:

\$PERDAPI,PPS,LEGACY,1,0,200,0,0,25*29
Type: LEGACY PPS Mode: Always output
1PPS Pulse width: 200 ms cable delay: 0 ns

Polarity: rising edge of PPS is synchronous with UTC time.

PPS estimated accuracy threshold is 25nsec.

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

Notes: △4

- LEGACY PPS setting is output legacy PPS which is not synchronized with frequency which is output from GCLK pin, but which is output immediately after first fix in case of cold start.
- GCLK PPS setting is output GCLK PPS which synchronized with frequency which is output from GCLK pin, but it takes some to become GCLK PPS steady after first fix (typically, 1~2 minutes after fist fix). User can confirmed whether GCLK PPS is steady by GCLK accurate field of TPS4 sentence.
- User can choose GPS, UTC (USNO) and UTC (SU) as alignment of PPS by TIMEALIGN command. The default is UTC (USNO). As for details, please refer to the page of TIMEALIGN command.
- The condition of PPS synchronization is the follow.

[1] GPS alignment

PPS mode	Before first fix	After first fix
111000	OFF	055
Ü	OFF	OFF
1	Sync with RTC	Sync with GPS
2~4	OFF	Sync with GPS

[2] UTC (USNO) alignment (default)

	` , -						
PPS mode	Before first fix	After first fix	After taking UTC (USNO) parameter from GPS				
0	OFF	OFF	OFF				
1	Sync with RTC	Sync with GPS	Sync with UTC (USNO)				
2~4	OFF	Sync with GPS	Sync with UTC (USNO)				

[3] UTC (SU) alignment

PPS mode	Before first fix	After first fix	After taking UTC (SU) parameter from GLONASS				
0	OFF	OFF	OFF				
1	Sync with RTC	Sync with GPS	Sync with UTC (SU)				
2~4	OFF	Sync with GPS	Sync with UTC (SU)				

- About PPS estimated accuracy, please refer to the page of CRX (TPS2) sentence.

Users manual	Appendix A				
Revision #:	Α				
Date:	07-14-15				

RESTART - Restart command 4 Format:

\$PERDAPI	,	RESTART	,	restart mode	*hh	<cr></cr>	<lf></lf>		
1 2									

Ν	um	Contents	Range	Default	Remark
	1	RESTART	-	-	Command Name
	2	restart mode	HOT WARM COLD FACTORY	-	Restart mode

Example:

\$PERDAPI,RESTART,COLD*08

Mode: cold restart

Notes: △4

- As for the differences depending on the restart mode, please refer to the page of "Backup of the Receiver Parameters (for BBRAM)".
- The data which is stored by FLASHBACKUP command in Flash is not cleared even if FACTORY restart is occurred.
- Power off/on of GT-87 corresponds to hot restart when it is within 4 hours after last fix.
- Power off/on of GT-87 corresponds to warm restart when it is over 4 hours after last fix.

Users manual	Appendix A				
Revision #:	Α				
Date:	07-14-15				

TIME – Setting of time information 4

Initial time is configured. The setting of time is effective only within the case that time is not decided by other factors. A setting of a millennium which is the times of GPS week rollover is received also after time decision.

Format:

\$PERDAPI	,	TIME	,	time of date	,	day	,	month	,	year	*hh	<cr></cr>	<lf></lf>
	1 2			3		4		5					

Num	Contents	Range	Default	Remark
1	TIME	-	-	Command Name
2		00 to 23		UTC (Hour)
	Time of date	00 to 59	0	UTC(Minute)
		00 to 59		UTC(Second)
3	day	1 to 31	22	UTC (Date)
4	month	1 to 12	8	UTC (Month)
5	year	2013 to 2099	1999	UTC (Year) ∆3

Example:

\$PERDAPI,TIME,021322,24,11,2020*64 Time: 02:13:22 on 24th November, 2020

Notes: △4

- This command is needed to input correct date within +/- 1 year.
- Under normal conditions, User needs not to set initial time because time is decided by satellite navigation data.
- As for GPS week rollover timing and GT-87 week rollover timing, please refer to the follow.

event	date	GPS week
GPS week rollover timing (1st)	1000/00/22	1024
default time of date of GT-87	1999/08/22	1024
GPS week rollover timing (2nd)	2019/04/07	2048
rollover timing of GT-87	2032/08/15	2745
GPS week rollover timing (3rd)	2038/11/21	3072
operable time limit of GT-87	2099/12/31	6260

[In case that GT-87 does not have glonass]

GT-87 can keep outputting correct date after 2032/08/15 during power distribution.

GT-87 will output 2012/12/30 after 2032/08/15 unless user sets correct date by TIME command after user turns off GT-87 and also turns off backup current for BBRAM.

[In case that GT-87 has glonass]

GT-87 can adjust millennium automatically in the timing of first fix of glonass and outputs correct date until 2099/12/31 without user setting even if user turns off GT-87 and backup current.

Users manual	Appendix A				
Revision #:	Α				
Date:	07-14-15				

TIMEZONE - Local Zone Time 4

This sentence is reflected to ZDA sentence (not only local zone field but also UTC time field).

Format:

\$PERDAPI	,	TIMEZONE	,	sign	,	hour	,	minute	*hh	<cr></cr>	<lf></lf>
		1		2		3		4			

Num	Contents	Range	Default	Remark				
1	TIMEZONE	ı	-	Command Name				
2	sign	0 to 1	0	GMT sign "0" shows positive, "1" shows negative.				
3	hour	0 to 23	0	GMT (Hour)				
4	minute	0 to 59	0	GMT (Minute)				

Example:

\$PERDAPI,TIMEZONE,0,9,0*69

As GMT offset, display time is carried out +9:00.

Notes: △4

- In UTC (SU) alignment, GMT offset is changed to +3:00 automatically.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

SURVEY – Position Mode 41 Format:

\$PERDAPI,	SURVEY	, positi	position mode		[, sigma threshold ,		,	time threshold]				
	1		2			3			4			
		[,	[, latitude		,	longitude		,	altitude]]	*hł	CR>	<lf></lf>
		·	5			6			7			

Num	Contents	Range	Default	Remark
1	SURVEY	-	-	Command Name
2	position mode	0 to 3	2	0: Normal NAV (navigation) mode 1: Position Survey SS (self survey) mode 2: Position Survey CSS (continual self survey) mode 3: Position-hold TO (time only) mode
3	sigma threshold	0 to 255	0 ∆3	Sigma threshold (m) which changes automatically to position-fixed. (When the threshold value is 0, it is not used.)
4	time threshold	0 to 10080	480 (8hours) △3	Time threshold (minute) which changes automatically to position-fixed. (When the threshold value is 0, it is not used.)
5	latitude △1	-90 to 90	0	Latitude for hold position in TO mode. (degree) A positive number means the north latitude and a negative number means the south latitude. This field can be set only when position mode is 3.
6	longitude △1	-180 to 180	0	Longitude for hold position in TO mode. (degree) A positive number means the east longitude and a negative number means the west longitude. This field can be set only when position mode is 3.
7	altitude △1	-1000 to 18000	0	Altitude for hold position in TO mode. (m) This field can be set only when position mode is 3.

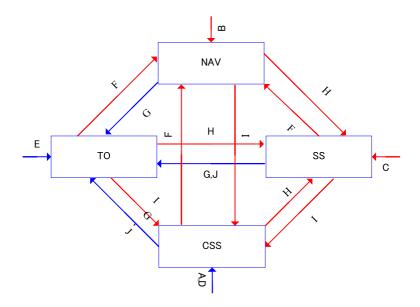
Example:

\$PERDAPI,SURVEY,1,10,1440*74

Mode: SS mode Sigma Threshold: 10 Time Threshold: 1440

\$PERDAPI,SURVEY,3,0,0,37.78700,-122.45100,31.5*53 Mode: TO mode Sigma Threshold: 0 Time Threshold: 0

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15


Fixed position: 37.78700 degrees north 122.45100 degrees west Altitude: 31.5 m

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Notes:

- It is omissible after the 3rd field.
- When the position mode is "1", a position is re-calculated after power supply OFF/ON. Please use it, when the antenna position may change before power supply OFF.
- When the position mode is "2", after power supply OFF/ON, the estimated position that calculated before power supply OFF is kept, and the position is updated. By using it when the antenna position does not change after the power supply OFF, the time for changing to Position-hold mode can be shortened.
- In order to change automatically to Position-hold mode, it is necessary to set to Survey mode.
- If both sigma threshold and time threshold are configured, the position mode changes to Position-hold mode when either is fulfilled. When the threshold value is 0, it is not used.
- The displayed position may differ a little from the configured position due to conversion error.
- Hot start is occurred when survey mode is shift to NAV mode. $\vartriangle 1$

Flow chart about position mode

	Transition condition	Whether keep or not survey position and number of times of survey process
Α	After first power on, or after factory restart (default)	Discard
В	After power on in case that last mode is "SURVEY,0".	Discard
С	After power on in case that last mode is "SURVEY,1".	Discard
D	After power on in case that last mode is "SURVEY,2".	Keep
E	After power on in case that last mode is "SURVEY,3".	Keep
F	"SURVEY,0" command	Discard
G	"SURVEY,3" after self survey position is fixed. "SURVEY,3" with user's hold position.	Keep
Н	"SURVEY,1" command	Discard
I	"SURVEY,2" command	Discard

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

	The condition of survey is satisfied.	
J	[*] Position mode is always started by time only mode if TO	Keep
	mode by this condition and power off	1

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

FREQ — Setting of GCLK FREQUENCY 4247 Format:

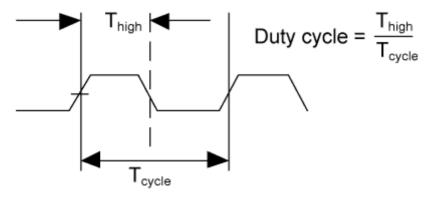
\$PERDAPI	,	FR	,	mode	,	freq	[,	duty	,	offset]	*hh	<cr></cr>	<lf></lf>
		1		2		3		4		5			

Num	Contents	Range	Default	Remark
1	FREQ	-	-	Command Name
2	mode	0 to 1	0	0 : stop 1 : output
3	freq	4000 to 40000000	10000000 (10MHz)	frequency[Hz]
4	duty △2	10 to 90 △7	50	duty cycle [%]
5	offset ∆2	0 to 99	0	phase delay in cycle [%] from GCLK-PPS edge

Example:

\$PERDAPI,FREQ,1,10000000*47

Mode: output Frequency: 10MHz


Notes:

- It is omissible after the 4th field.

- The response which is inserted current value to each field is obtained by receiving an effective command for setting or inputting a command which is omitted the fields after Command Name, that is, \$PERDAPI,FREQ,QUERY*11.

- Duty cycle is derived from Thigh / Tcycle in the follow figure. $\triangle 2$

- User can stock current FREQ command setting on Flash by FLASHBACKUP command.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

DEFLS – Setting of default leap second 44 46 Format:

\$PERDAPI	,	DEFLS	,	sec	[,	mode]	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	DEFLS	-	-	Command Name
2	sec	0 to 32	16	Default leap second
3	mode	AUTO or FIXED	AUTO	AUTO: default leap second is updated automatically after taking leap second from satellites. FIXED: default leap second is kept as user setting.

Example:

\$PERDAPI, DEFLS, 16, AUTO*27

Default leap second: 16 second (this value is updated automatically).

Notes:

- It is omissible after the 3rd field.
- This value is used before leap second is confirmed by other factors which are to take UTC (USNO) parameter which is broadcasted from GPS or to take time difference between GPS and GLONASS.
- GT-87 can store current DEFLS command setting in Flash by FLASHBACKUP command.
- Cold restart (time also be cleared) is run when this command is run. $\vartriangle 6$

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

TIMEALIGN – setting of time alignment △4 Format:

1 2 \$PERDAPI , TIMEALIGN , mode *hh <CR> <LF>

Num	Contents	Range	Default	Remark
1	TIMEALIGN	-	-	Command Name
2	mode	1 to 3	2	1 : GPS alignment 2 : UTC(USNO) alignment 3 : UTC(SU) alignment

Example:

\$PERDAPI,TIMEALIGN,2*31 UTC (USNO) alignment

Notes:

- Please note that mode 0 is invalid value.
- User can store current TIMEALIGN command setting on Flash by FLASHBACKUP command.
- This command is used to set output time alignment and 1PPS alignment.

[1: GPS alignment]

- Leap second is not applied to output time even if GT-87 already has leap second.
- PPS is output in synchronization with GPS even if GT-87 already has UTC parameter.
- In Glonass only mode, correct default leap second is needed to output correct time.

[2: UTC (USNO) alignment]

- · Leap second is applied to output time.
- PPS is output in synchronization with GPS before taking UTC (USNO) parameter from GPS.
- PPS is output in synchronization with UTC(USNO) after taking UTC (USNO) parameter from GPS.
- In Glonass only fix, because GT-87 can't take UTC (USNO) parameter from GLONASS, PPS is kept to output in synchronization with GPS.

[3: UTC (SU) alignment]

- Leap second is applied to output time. And, GMT offset is set as +3:00.
- PPS is output in synchronization with GPS before taking UTC (SU) parameter from GLONASS.
- PPS is output in synchronization with UTC(SU) after taking UTC (SU) parameter from GLONASS.
- In GPS only fix, because GT-87 can't take UTC (SU) parameter from GPS, PPS is kept to output in synchronization with GPS.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

Restriction:

Output time

	GPS only fix setting	GLONASS only fix setting	GPS + GLONASS setting
GPS alignment	ОК	accurate default leap second is required [*1]	ОК
UTC(USNO) alignment	OK	OK	OK
UTC(SU) alignment	OK	OK	OK

PPS

	GPS only fix setting	GLONASS only fix setting	GPS + GLONASS setting
GPS alignment	OK	OK	OK
UTC(USNO) alignment	OK	NG	OK
UTC(SU) alignment	NG	OK	OK

^[*1] In GPS alignment and GLONASS only fix setting, to output correct output time, user needs to set accurate default leap second by DEFLS command.

⁻ In this graph, QZSS is treated as GPS.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

FLASHBACKUP - Setting of backup in Flash 4 Format:

\$PERDAPI	,	FLASHBACKUP	,	type	*hh	<cr></cr>	<lf></lf>
		1		2			

Num	Contents	Range	Default	Remark
1	FLASHBACKUP	-	-	Command Name
2	type	0x00 to 0x07 (HEX)	0x00	Target of backup Each bit represents one command setting 0x01: FREQ command setting 0x02: DEFLS command setting 0x04: TIMEALIGN command setting 0x00 means that flash backup is initialised.

Example:

\$PERDAPI,FLASHBACKUP,0x03*4E

Current setting of FREQ and DEFLS command is stored in flash.

Notes:

- This data stored in Flash is erased when software update.
- This data stored in Flash is not erased by factory cold restart.
- Hot start is occurred when this command is input.
- Please don't turn off GT-87 during this command is sent.

Restriction:

GT-87 has two ways to backup data.

[1] BBRAM

BBRAM is RAM which is available to store data as long as backup current is impressed. GT-87 can store ephemeris data, almanac data and configuration which user sets by commands etc in BBRAM, and the data is not erased even if GT-87 is turned off.

The backup timing of BBRAM is every second. The data is cleared when user inputs RESTART command and/or user turns off backup current.

[2] FLASH

GT-87 can store FREQ command setting, DEFLS command setting and/or TIMEALIGN command setting in flash when user inputs FLASHBACKUP command. The data is not erased even if GT-87 is turned off or RESTART command. The data is cleared when user inputs FLASHBACKUP command or software update.

If GT-87 has different backup data between BBRAM and Flash, BBRAM data have a priority over flash. In this case, when the data of BBRAM is invalid because that backup current is turned off, Flash data is applied.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CROUT - Setting of CR Output Format:

\$PERDAPI	,	CROUT	,	type	,	rate	*hh	<cr></cr>	<lf></lf>
		1		2		2			

Num	Contents	Range	Default	Remark
1	CROUT	-	-	Command Name
2	type	N,M,W,X,Y,Z	W,X,Y,Z	Output CR sentence [*] Alphabets of outside range are reserved.
3	rate	W,X,Y,Z: 0 to 255 N,M: 0 to 1	1	W,X,Y,Z: 1-255:Update interval of the sentence (sec) 0: The sentence(s) is/are stopped. N,M: 1: Sentence(s) is/are output every event occurred. 0: The sentence(s) is/are stopped.

Example:

\$PERDAPI,CROUT,W,1*4E

CRW (TPS1) sentence is output every second.

\$PERDAPI,CROUT,XZ,3*19

CRX (TPS2) sentence and CRZ(TPS4) sentenced are output every 3 seconds.

\$PERDAPI,CROUT,W,0*4F

CRW (TPS1) sentence is stopped.

\$PERDAPI,CROUT,N,1*57

CRN sentence is output every event occurred.

Notes:

- "M" or/and "N" can be output only in case that baud rate is 115200bps. △1

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

7 CFG – Setting of Application Software

NMEAOUT - Standard NMEA Output 49

Format:

\$PERDCFG	,	NMEAOUT	,	type	,	interval	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	NMEAOUT	-	-	Command Name
				Standard NMEA sentence
2	type	[*1]	-	[*1]
				GGA, GLL, GNS, GSA, GSV, RMC, VTG, ZDA, ALL∆9.
				(ALL means all sentences from GGA to ZDA.)
				Update interval of the sentence (sec)
3	Interval	0 to 255	-	When the value is "0", the sentence is output only
				once. After that, the sentence is stopped.

Example:

\$PERDCFG,NMEAOUT,GGA,2*57

Interval: 2 seconds

\$PERDCFG,NMEAOUT,GSV,0*56

GSV sentence is output only once. After that, GSV sentence is stopped.

UART1 – Serial Communication Port Format:

\$PERDCFG	,	UART1	,	baud	*hh	<cr></cr>	<lf></lf>
-----------	---	-------	---	------	-----	-----------	-----------

2

Num	Contents	Range	Default	Remark
1	UART1	-	-	Command Name
2	baud	4800, 9600, 19200, 38400, 57600 or 115200	38400	Baud rate (bps)

Example:

\$PERDCFG,UART1,115200*65

Baud rate: 115200 bps

Notes:

- When the setting of the serial communication port is changed by this command, ACK sentence is output by the baud rate which was being used.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

- In case of using low baud rate, please adjust size of output sentence by NMEAOUT command and CROUT command to output all sentence within one second.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

SYS - PVT System

1.2 VERSION – Software Version

Format:

\$PERDSYS	,	VERSION	*hh	<cr></cr>	<lf></lf>

1

N	lum	Contents	Range	Default	Remark
	1	VERSION	-	-	Command Name

Example:

\$PERDSYS,VERSION*2C

GPIO – General Purpose Input/output Format:

1

Num	Contents	Range	Default	Remark
1	GPIO	1	-	Command Name

Example:

\$PERDSYS,GPIO*67

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

8 Proprietary NMEA Output Sentences

This sentence is a protocol only for our company. It starts from "\$PERD" which shows that it is an original sentence.

ACK – Output the Command Reception Check Format:

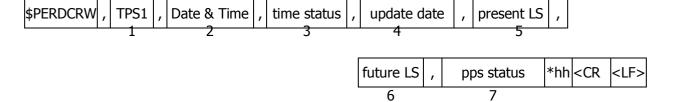
\$PERDACK	,	command	,	sequence	,	subcommand	*hh	<cr></cr>	<lf></lf>
		1		2					

Num	Contents	Range	Default	Remark
1	command	1	-	First field of received command
2	sequence	-1 to 255	0	The number of times successful for the reception. It is added 1 whenever it succeeds in command reception, and 0 to 255 is repeated. When command reception is failed, -1 is returned.
3	subcommand	-	_	Second token of input command

Example:

\$PERDACK,PERDAPI,-1,PPS*72 PERDAPI,PPS command input is failed.

Notes:


- As for the command, check sum must be effective before ACK is sent.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

9 CR — eRide GNSS Core Library Interface

CRW(TPS1) – Output Time Transfer Info per Second (Date and leap second) 4445 Format:

Num	Contents	Range	Default	Remark		
1	TPS1	-	-	Command Name		
2	Date & Time	14-byte fixed length	19990822000000	Present date and time year, month, day, hour, minute, second		
		0 to 2		Present time status of output sentence 0: RTC 1: GPS (GT-87 doesn't apply leap second		
3	time status	(1byte)	0	or has only default leap second)		
				2: UTC (GT-87 has confirmed leap second and applies it.)		
				Leap second update schedule		
4	update date	14-byte fixed length	00000000000000	year, month, day, hour, minute, second		
T				This date indicates zero when no leap second update schedule.		
5	present LS	-31 to +32	+16	Present leap second received from satellites		
	-	(3byte)	∆5			
6	future LS	-31 to +32 (3byte)	+00	Future leap second received from satellites		
				Present pps is synced with the follow.		
	pps status	pps status 0 to 3 (1byte)	0	0:RTC		
7				1:GPS		
	∆4			2:UTC(USNO)		
				3:UTC(SU)		

Example.

\$PERDCRW,TPS1,20120303062722,2,20120701000000,+15,+16,2*09

Present date: 2012/03/03 06:27:22

Time status: present time of output sentence is sync with UTC.

Leap second update schedule: 2012/7/1 00:00:00

Current leap second: +15 Future leap second: +16

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Pps status: present pps is sync with UTC (USNO)

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Notes:

- This command is output every second.
- Present LS is current leap second. This is updated in the timing of leap second update schedule.
- \$PERDAPI,CROUT,W,0*4F stops outputting this command.
- Update data indicate zero when no update schedule.

Restriction:

About time status

alignment	Before first fix	After first fix	After taking confirmed leap second
GPS	RTC	GPS	GPS
UTC(USNO)	RTC	GPS	UTC
UTC(SU)	RTC	GPS	UTC

About leap second which is used to adjust output time

alignment	Before first fix	After first fix	After taking confirmed leap second
GPS	0	0	0
UTC(USNO)	Default leap second	Default leap second	confirmed leap second
UTC(SU)	Default leap second	Default leap second	confirmed leap second

GT-87 takes confirmed leap second when GT-87 takes UTC (USNO) parameter which is broadcasted from GPS or takes time both GPS and GLONASS.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CRX(TPS2) – Output Time Transfer Info per Second (PPS) 4 Format:

\$PE	RDCRX ,	TPS2 ,	pps status	, pps mode	, pps perio	d ,	, pulse width ,	cable	e delay	,
	·	1	2	3	4		5		6	_
,	polarity	, pps typ	e , estima	ted accuracy	, Sawtooth	,	pps acc threshold	t *hh	<cr></cr>	<lf></lf>
	7	8		9	10		11			

Num	Contents	Range	Default	Remark
1	TPS2	-	-	Command Name
		_		Output status of 1PPS
2	pps status	0 to 1	0	0: 1PPS OFF
		(1byte)		1: 1PPS ON
				PPS mode
				0: Always stop
				1: Always output
3	pps mode	0 to 4 (1byte)	4	2: Output only during positioning more than one satellite
				3: Output only when TRAIM is OK
				4: Output only when estimated accuracy is less than estimated accuracy threshold
4	period	0 to 1 (1byte)	0	1PPS output interval 0: 1PPS (A pulse is output per second) 1: PP2S (A pulse is output per two seconds)
5	pulse width	001 to 500 (3byte)	200	1PPS pulse width (ms)
6	cable delay	-100000 to +100000 (7byte)	+000000	1PPS cable delay (ns)
7	polarity	0 to 1 (1byte)	0	0 : rising edge 1 : falling edge
8	pps type	0 to 1 (1byte)	0	0 : LEGACY PPS 1 : GCLK PPS
9	estimated accuracy	0000 to 9999 (4byte)	0	1PPS estimated accuracy. (ns)
10	Sawtooth	-1.760 to +1.760 (6byte)	+0.000	Sawtooth correction (ns)
11	pps acc threshold	0000 0005 to 9999 (4byte)	1000	PPS estimated accuracy threshold (ns) This threshold is used for pps mode 4. 0 means that this threshold is not used.

Users manual	Appendix A			
Revision #:	A			
Date:	07-14-15			

\$PERDCRX,TPS2,1,2,0,200,+001000,0,0,0005,+0.000,1000*29

PPS status: PPS ON (1)
PPS mode: during on fix (2)
PPS period: 1PPS (0)
PPS pulse width: 200ms
PPS cable delay: +1000ns
Polarity: rising edge
Type: LEGACY PPS
Estimated accuracy: 5ns

Sawtooth: +0.000ns

PPS estimated accuracy threshold: 1us

- This command is output every second.
- \$PERDAPI,CROUT,X,0*40 stops outputting this command.
- Output Values of period, pulse width, polarity are switched by pps type (LEGACY or GCLK).
- PPS estimated accuracy means estimated difference between PPS of GT-87 and GPS, UTC (USNO) or UTC (SU) timing which user sets by TIMEALIGN command. This is not guarantee value, but user can use this value to get a rough idea.
- Sawtooth means correction value under the resolution of GT-87, that is, about 3.5 ns.
- Sawtooth value is applied to prior to the one second PPS. Corrected PPS [t-1] = output PPS [t-1] + Sawtooth value [t]

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

CRY(TPS3) - Output Time Transfer Info per Second (Survey & TRAIM) Format:

\$P	ERDCRY	, TPS3	,	pos mode	,	sigma	, si	gma thre	esho	old ,	time	,	time t	hresho	ld ,
, <u> </u>		1		2		3		4			5			6	
	TRAIM s	solution	,	TRAIM sta	tu	s , F	Remov	ed SVs	,	Rec	eiver statu	IS	*hh	<cr></cr>	<lf></lf>
	7	7		8			Ç)			10				

Num	Contents	Range	Default	Remark
1	TPS3	-	-	Command Name
				Positioning mode
				0: Normal
2	pos mode	0 to 3 (1byte)	2	1: Survey mode (re-calculation for every power supply OFF/ON)
		(ID)(C)		2: Survey mode(calculation continuously before and after power supply OFF/ON)
				3: Position-hold mode
3	sigma	0000 to 1000 (4byte)	1000	Current variance value of survey position (m)
4	sigma	000 to 255	000	Sigma threshold (m) which changes
'	threshold	(3byte)	∆3	automatically to position-fixed.
5	time	0 to 999999 (6byte)	000000	Current update times of survey position (sec). It is not updated at the time of positioning interruption.
6	time	0 to 604800	028800	Time threshold (sec) which changes
0	threshold	(6byte)	∆3	automatically to position-fixed.
				TRAIM solution
				0: OK
7	TRAIM	0 to 2	2	1: ALARM
/	solution	(1byte)	2	2: UNKNOWN, due to
				a. alarm threshold set too low
				b. insufficient satellites being tracked
				TRAIM status
8	TRAIM	0 to 2	2	0: detection and isolation possible
	status	(1byte)	2	1: detection only possible
				2: neither possible
9	removed SV	0 to 3 (2byte)	00	number of the removed satellite by TRAIM
	Receiver			
10	status	10byte	0x00000000	Reserve field
	∆3			

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

\$PERDCRY,TPS3,2,0003,001,002205,086400,0,0,00,0x000000000*68

Positioning mode: Survey mode (calculation continuously) (2)

Survey sigma: 3 [m]

Survey sigma threshold: 1 [m] Survey time: 2205 [seconds]

Survey time threshold: 86400 [seconds]

TRAIM solution: OK (0)
TRAIM status: OK (0)
Removed SVs: 0

Receiver status: 0x00000000

Notes:

- This command is output every second.

- \$PERDAPI,CROUT,Y,0*41 stops outputting this command.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CRZ (TPS4) – Output Time Transfer Info per Second (FREQUENCY) △3 Format:

\$PERDCRZ,	TPS4	, freq mode ,	Freq status	,	GCLK accuracy	,	е	,	de	,
	1	2	3		4		5		6	

lock cnt ,	lockoff cnt	, reserve ,	IDtag	GCLK setting 1	, GCLK setting 2	*hh <cr></cr>	<lf></lf>
7	8	9	10	11	12		

Num	Contents	Range	Default	Remark
1	TPS4	-	-	Command Name
2	freq mode	1 to 6 (1byte)	1	1: warm up 2: lock 3: hold over 4: free run 5: coarse mode 6: fine mode
3	Freq status	0 or 1 (1byte)	0	0: Not output 1: Output
4	GCLK accuracy	0 or 1 (1byte)	0	Not accurate GCLK PPS and GCLK frequency are accurate
5	е	-999999 to +999999 (7byte)	-	Phase delay between LEGACY and GCLK PPS (no dimensional)
6	de	-999999 to +999999 (7byte)	-	Amount of change of phase delay (no dimensional)
7	lock cnt	0 to 999999 (7byte)	-	Duration time of Lock (sec)
8	lockoff cnt	0 to 999999 (7byte)	-	Duration time of holdover/free run (sec)
9	reserve	0x00 to 0xFF (6byte)	-	Reserve field
10	IDtag	(6byte)	-	Product name and last two digits of product version In case of GT-8777 of "4850466003" → 8777 + 03 = 877703 In case of GT-87 of "4850466005" → 8700 + 05 = 870005
11	GCLK setting 1	(4byte)	-	Reserve field
12	GCLK setting 2	(4byte)	-	Reserve field

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

Freq mode: warm up Freq status: output GCLK accuracy: accurate

- This command is output every second.
- \$PERDAPI,CROUT,Z,0*42 stops outputting this command.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CRM - Measurement Data of GPS

Format:

Of Illac.																	
\$PERDCRM	,	time	,	ser	num	,	max	sen	,	syste	em	,	svid		,	reserve	9
		1			2		3		4				5			6	
			sr	nr	,	adr	dr , dopp		ofrec	7 ,	pseu	ıd	orange	*h	h	<cr></cr>	<lf></lf>
		•	7	7	-	8		Ċ	9			1	0				

Num	Contents	Range	Default	Remark
1	time	0 to 604799	-	GPS time of week
2	sennum	1 to 32	-	Sentence number
3	maxsen	1 to 32	-	Maximum number of sentences
4	system	1	-	GNSS system ID (1=GPS)
5	svid	1 to 99	-	Satellite number
6	reserve	1 to 3	-	Reserve field
7	snr	0 to 55	-	Signal to Noise Ration [dB-Hz]
8	adr	32bit	-	Accumulated Doppler Range [Cycles, LSB=-6]
9	doppfreq	32bit	-	Doppler Frequency [meters/sec, LSB=-12]
10	pseudorange	32bit	-	Pseudrange [meters, LSB=-6]

Example:

\$PERDCRM,467055,9,10,1,18,2,40,251470,-225117,1630912949*4C

- This sentence will be output as a set once per second and will contain measurements for all GPS systems.
- To output this sentence, please input "\$PERDAPI,CROUT,M,1*54" when baud rate is 115200bps.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

CRN - Navigation Data

Format:

\$PERDCRN	,	system	,	svid	,	subframe data	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	system	1	-	GNSS system ID (1=GPS)
2	svid	svid 1 to 99		Satellite number
3	subframe data	10 words (60 strings)	-	Subframe data no parirt included

Example:

\$PERDCRN,1,7,8B0B349809AC00424A2471C5FF9F27BB10C82EB5884CC987FFA50C0BF2A8*0C

- For each GPS satellite decoding data, this string is output once every 6 seconds.
- For GPS, the subframe field is a hexadecimal representation of all 10 words of a subframe.
- If a word was not decoded or contained a parity error, the six characters associated with that word will be reported as "-----".
- To output this sentence, please input "\$PERDAPI,CROUT,N,1*57" when baud rate is 115200bps.

Users manual	Appendix A
Revision #:	Α
Date:	07-14-15

SYS - Answer of PVT System

7.3.1 ERSION- Software Version

Format:

\$PERDSYS	,	VERSION	,	device	,	version	,	reserve1	,	reserve2	*hh	<cr></cr>	<lf></lf>
		1		2		3		4		5			

Num	Contents	Range	Default	Remark
1	VERSION	-	-	Command Name
2	device	-	-	Device Name
3	version	-	-	Version number
4	reserve1	-	-	Reserve field
5	reserve2	-	-	Reserve field

Example:

\$PERDSYS,VERSION,OPUS7_SFLASH_ES2_64P,ENP622A1226410F,QUERY,N/A*1A

Notes:

- Character string of the device and version is free format.

GPIO- General Purpose Input/output Format:

\$PERDSYS	,	GPIO	,	state	*hh	<cr></cr>	<lf></lf>
		1		2			

Num	Contents	Range	Default	Remark
1	GPIO	-	-	Command Name
2	state	H or L	-	GPIO state (H:High , L:Low)

Example:

\$PERDSYS,GPIO,HHHHLLLL*4B

Notes:

- This first character represents GPIO 0 and the last character represents GPIO 8.

Users manual	Appendix A		
Revision #:	Α		
Date:	07-14-15		

FIXSESSION- Fix Session 41 Format:

1

\$PERDSYS , FIXSESSION , reserve1 [, reserve2 , reserve3] *hh <cr> <lf></lf></cr>

2 3

Num	Contents	Range	Default	Remark
1	FIXSESSION	-	-	Command Name
2	reserve1	-	-	reserve field
3	reserve2	-	-	reserve field
4	reserve3	-	-	reserve field

Example:

\$PERDSYS,FIXSESSION,ON,19015,19.015*7C

Notes:

- This string is sent when certain events occur. This is for *eRide* use only.

ANTSEL- Antenna selecting 41 Format:

\$PERDSYS	,	ANTSEL	,	reserve1	,	reserve2	*hh	<cr></cr>	<lf></lf>
		1		2		3			

Num	Contents	Range	Default	Remark
1	ANTSEL	-	-	Command Name
2	reserve1	-	-	reserve field
3	reserve2	-	-	reserve field

Example:

\$PERDSYS,ANTSEL,FORCE1L,1LOW*32

Notes:

- This string is sent when certain events occur. This is for *eRide* use only.

Users manual	Appendix A			
Revision #:	Α			
Date:	07-14-15			

BBRAM - Battery Backup Random Access Memory 41 Format:

\$PERDSYS	,	BBRAM	,	reserve1	[,	reserve2]	*hh	<cr></cr>	<lf></lf>
		4		2		2			

2

Num	Contents	Range	Default	Remark
1	BBRAM	-	-	Command Name
2	reserve1	-	-	reserve field
3	reserve2	-	-	reserve field

Example:

\$PERDSYS,BBRAM,PASS*15

Notes:

- This string is sent when certain events occur. This is for *eRide* use only.

MSG – Event Driven Message △1 Format:

\$PERDMSG	,	key	[,	string]	*hh	<cr></cr>	<lf></lf>
		1		2			

N	um	Contents	Range	Default	Remark
	1	key	-	-	Alphanumeric event indicator
	2	string	-	-	Description of event

Example:

\$PERDMSG,1A*06

Notes:

- This string is sent when certain events occur. Some strings are for *eRide* use only and contain only an alphanumeric key. Others provide user feedback and contain description of the event.

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

10 Backup of the Receiver Parameters (for BBRAM) 4

The parameters which this receiver has backed up are shown below.

Chart. Backup of the receiver parameter

CONTENTS	PARAMETER	HOT	WARM	COLD	FACTORY	POWER OFF/ON
Present time	Date & Time	YES	YES	YES	NO	YES
Present time	Millennium	YES	YES	YES	NO	YES
	Latitude	YES	YES	YES	NO	YES
Receiver's present position	Longitude	YES	YES	YES	NO	YES
position	Altitude	YES	YES	YES	NO	YES
5	Latitude	YES	YES	YES	NO	YES[*3]
Receiver's hold position[*1]	Longitude	YES	YES	YES	NO	YES[*3]
position[1]	Altitude	YES	YES	YES	NO	YES[*3]
Ephemeris	Ephemeris data	YES	NO	NO	NO	YES[*2]
Almanac	Almanac data	YES	YES	NO	NO	YES

Chart. Backup of the receiver parameter of command

COMMAND NAME	PARAMETER	НОТ	WARM	COLD	FACTORY	POWER OFF/ON
GNSS	GNSS setting	YES	YES	YES	NO	YES
FIXMASK	FIXMASK setting	YES	YES	YES	NO	YES
PPS	PPS setting	YES	YES	YES	NO	YES
TIMEZONE	GMT setting	YES	YES	YES	NO	YES
	position mode	YES	YES	YES	NO	YES
SURVEY	Sigma threshold for survey	YES	YES	YES	NO	YES
	Time threshold for survey	YES	YES	YES	NO	YES
	Current sigma for survey	YES[*3]	YES[*3]	YES[*3]	NO	YES[*3]
	Current time for survey	YES[*3]	YES[*3]	YES[*3]	NO	YES[*3]
FREQ	FREQ setting	YES	YES	YES	NO	YES
CROUT	CROUT setting	YES	YES	YES	NO	YES
DEFLS	Default leap sec	YES	YES	YES	NO	YES

Page #:	55 of 58	www.novuspower.com	
---------	----------	--------------------	--

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

TIMEALIGN	Time alignment	YES	YES	YES	NO	YES
FLASHBACKUP	Backup in flash	YES	YES	YES	YES	YES

Chart. Backup of the configure parameter of command

Situate Satisfactor and cominguity parameter of community						
COMMAND NAME	PARAMETER	HOT	WARM	COLD	FACTORY	POWER OFF/ON
UART1	Baud rate of UART1	YES	YES	YES	YES	NO
NMEAOUT	NMEA output interval	YES	YES	YES	YES	NO

[*1] The position calculated by position survey mode or input by \$PERDAPI,SURVEY,3. [*2] There is a time limitation (4 hours). [*3] CSS (continues survey) mode or TO (time only) mode only

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

LIMITED HARDWARE WARRANTY

Novus Power Products (hereinafter Novus) warrants its products to the original end user ("original purchaser") and warranty is not transferrable. Novus guarantees that the NOVUS hardware products that you have purchased from NOVUS are free from defects in materials or workmanship under normal use during the LIMITED WARRANTY PERIOD. The LIMITED WARRANTY PERIOD starts on the date of shipment and for the period of 1 (one) year to be free from defects caused by faulty materials or poor workmanship, provided:

- (a) NOVUS is notified in writing by Buyer of such defect prior to the expiration of the warranty period, and
- (b) after receiving return authorization –RMA- from NOVUS, the defective item is returned with transportation prepaid to NOVUS, Independence, Missouri, with transportation charges prepaid by Buyer ... see RMA policy in Terms and conditions, and
- (c) NOVUSs' examination of such unit shall disclose to its satisfaction that such defect(s) exist and have not been caused by misuse, neglect, improper installation, improper storage, unauthorized modifications, inadequate maintenance, operation outside the environmental specifications for the product, repair alteration, or accident. NOVUS assumes no risk or liability for results of the use of products purchased from it, including but without limiting the generality of the foregoing: (1) the use in combination with any electrical or electronic components, circuits, systems, assemblies or any other materials or substances; (2) unsuitability of any product for use in any circuit or assembly. Removal or tampering with tamper-proof label on merchandise will void warranty coverage unless with the written authorization from NOVUS (d) an evaluation fee will be charged to Buyer to cover inspection and testing costs for any item returned by Buyer under this paragraph which is found to be within specifications and/or otherwise not the responsibility of NOVUS under the terms and conditions of this paragraph or any other part of this Agreement..

Your dated sales or delivery receipt is your proof of the purchase date. You may be required to provide proof of purchase as a condition of receiving warranty service. You are entitled to hardware warranty service according to the terms and conditions of this document if a repair to your NOVUS product is required during the limited warranty period. Our obligation at NOVUS is limited to repair or replace products which prove to be defective.

Should Novus be unable to repair or replace the product within a reasonable amount of time, the customer's alternate remedy shall be a refund of the purchase price upon return of the product to Novus. The liability of NOVUS under this warranty is limited to replacing, repairing or issuing a credit, at its option, for any such item returned by Buyer under the terms of this warranty.

EXCLUSIONS: The above warranty shall not apply to defects resulting from improper or inadequate maintenance by the customer, customer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product or improper site preparation and maintenance (if applicable). For probes, cables, antennas and accessories, the warranty period is 90 (ninety) days.

PRODUCT SPECIFICATIONS: Published specifications whether contained herein or in any other materials or documents distributed to Buyer by Novus do not become final or binding on NOVUS until approved by NOVUS. NOVUS expressly reserves the right to change or modify specifications at any time without prior notice.

WARRANTY LIMITATIONS: NOVUS MAKES NO OTHER WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS PRODUCT. NOVUS SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN ALL CIRCUMSTANCES NOVUS' MAXIMUM LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE PRODUCTS SOLD. NOVUS SHALL NOT, UNDER ANY CIRCUMSTANCES BE LIABLE UPON A CLAIM OR ACTION IN CONTRACT, TORT, INDEMNITY OR CONTRIBUTION OR OTHER CLAIMS RELATING TO THE PRODUCTS IT SELLS WHICH EXCEEDS THIS LIABILITY LIMIT. NOVUS SHALL NOT BE LIABLE FOR THIRD PARTY CLAIMS FOR DAMAGES AGAINST THE CUSTOMER, OR FOR MALFUNCTION, DELAYS, INTERRUPTION OF SERVICE, LOSS OF BUSINESS, LOSS OR DAMAGE TO EXEMPLARY DAMAGES, WHETHER OR NOT NOVUS HAS BEEN MADE AWARE OF THE POSSIBILITY OF SUCH CLAIMS OR DAMAGES.

LIMITATION OF REMEDIES: REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL NOVUS BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA OR BUSINESS INFORMATION (OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE

Users manual	Appendix A		
Revision #:	В		
Date:	7-13-15		

OF OR INABILITY TO USE THE HARDWARE SUPPLIED THEREWITH EVEN IF NOVUS OR ANYONE ELSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

EXCLUSIVE REMEDIES: THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMERS' SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL NOVUS BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Page #: 5	58 of 58	www.novuspower.com	
-----------	----------	--------------------	--